Jyothirmai's picture
Update app.py
ad8b91f verified
raw
history blame
3.01 kB
import gradio as gr
from PIL import Image
import clipGPT
import vitGPT
import skimage.io as io
import PIL.Image
import difflib
def compare_and_highlight(text1, text2):
print("Triggered function")
matcher = difflib.SequenceMatcher(None, text1, text2)
output = ''
for op, a1, a2, b1, b2 in matcher.get_opcodes():
if op == 'equal':
output += f"**{text1[a1:a2]}**" # Highlight matches in bold
elif op == 'insert':
output += f"<ins>{text2[b1:b2]}</ins>"
elif op == 'delete':
output += f"<del>{text1[a1:a2]}</del>"
elif op == 'replace':
# Handle replacements (more complex)
output += f"<del>{text1[a1:a2]}</del> <ins>{text2[b1:b2]}</ins>"
print(output)
return output
# Caption generation functions
def generate_caption_clipgpt(image):
caption = clipGPT.generate_caption_clipgpt(image)
return caption
def generate_caption_vitgpt(image):
caption = vitGPT.generate_caption(image)
return caption
with gr.Blocks() as demo:
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports πŸ₯πŸ€–</h1>")
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
with gr.Row():
sample_images = [
"CXR191_IM-0591-1001.png",
"CXR192_IM-0598-1001.png",
"CXR193_IM-0601-1001.png",
"CXR194_IM-0609-1001.png",
"CXR195_IM-0618-1001.png"
]
image = gr.Image(label="Upload Chest X-ray")
gr.Gallery(
value = sample_images,
label="Sample Images",
)
# sample_images_gallery = gr.Gallery(
# value = sample_images,
# label="Sample Images",
# )
with gr.Row():
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
generate_button = gr.Button("Generate Caption")
caption = gr.Textbox(label="Generated Caption")
def predict(img, model_name):
if model_name == "CLIP-GPT2":
return generate_caption_clipgpt(img)
elif model_name == "ViT-GPT2":
return generate_caption_vitgpt(img)
else:
return "Caption generation for this model is not yet implemented."
with gr.Row():
text1 = gr.Textbox(label="Text 1")
text2 = gr.Textbox(label="Text 2")
compare_button = gr.Button("Compare Texts")
with gr.Row():
comparison_result = gr.Textbox(label="Comparison Result")
# Event handlers
generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click
compare_button.click(lambda: compare_and_highlight(text1.value, text2.value), [], comparison_result)
# sample_images_gallery.change(predict, [sample_images_gallery, model_choice], caption) # Handle sample images
demo.launch()