|
import torch |
|
import torch.nn as nn |
|
from torch.nn.utils import weight_norm |
|
|
|
|
|
class Chomp1d(nn.Module): |
|
def __init__(self, chomp_size): |
|
super(Chomp1d, self).__init__() |
|
self.chomp_size = chomp_size |
|
|
|
def forward(self, x) -> object: |
|
return x[:, :, :-self.chomp_size].contiguous() |
|
|
|
|
|
class TemporalBlock(nn.Module): |
|
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): |
|
super(TemporalBlock, self).__init__() |
|
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size, |
|
stride=stride, padding=padding, dilation=dilation)) |
|
self.chomp1 = Chomp1d(padding) |
|
self.relu1 = nn.ReLU(inplace=False) |
|
self.dropout1 = nn.Dropout(dropout) |
|
|
|
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size, |
|
stride=stride, padding=padding, dilation=dilation)) |
|
self.chomp2 = Chomp1d(padding) |
|
self.relu2 = nn.ReLU(inplace=False) |
|
self.dropout2 = nn.Dropout(dropout) |
|
|
|
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1, |
|
self.conv2, self.chomp2, self.relu2, self.dropout2) |
|
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None |
|
self.relu = nn.ReLU(inplace=False) |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
self.conv1.weight.data.normal_(0, 0.01) |
|
self.conv2.weight.data.normal_(0, 0.01) |
|
if self.downsample is not None: |
|
self.downsample.weight.data.normal_(0, 0.01) |
|
|
|
def forward(self, x) -> object: |
|
out = self.net(x) |
|
res = x if self.downsample is None else self.downsample(x) |
|
return self.relu(out + res) |
|
|
|
|
|
class TemporalConvNet(nn.Module): |
|
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): |
|
super(TemporalConvNet, self).__init__() |
|
layers = [] |
|
num_levels = len(num_channels) |
|
for i in range(num_levels): |
|
dilation_size = 2 ** i |
|
in_channels = num_inputs if i == 0 else num_channels[i-1] |
|
out_channels = num_channels[i] |
|
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size, |
|
padding=(kernel_size-1) * dilation_size, dropout=dropout)] |
|
|
|
self.network = nn.Sequential(*layers) |
|
|
|
def forward(self, x) -> object: |
|
return self.network(x) |
|
|
|
|
|
class TCN(nn.Module): |
|
def __init__(self, input_size, output_size, num_channels, kernel_size=2, dropout=0): |
|
super(TCN, self).__init__() |
|
self.tcn = TemporalConvNet(num_inputs=input_size, |
|
num_channels=num_channels, |
|
kernel_size=kernel_size, |
|
dropout=dropout) |
|
self.linear = nn.Linear(num_channels[-1], output_size) |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
self.linear.weight.data.normal_(0, 0.01) |
|
self.linear.bias.data.fill_(0) |
|
|
|
def forward(self, inputs) -> object: |
|
y = self.tcn.forward(inputs) |
|
output = self.linear(y[:, :, -1]) |
|
return output |
|
|