Jyantkumar's picture
Create app.py
5ce154b verified
raw
history blame
1.39 kB
import tensorflow as tf
tf.__version__
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tensorflow.keras.applications import vgg16
#from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Input, Dense, Flatten
from tensorflow.keras.utils import load_img, img_to_array
from sklearn.metrics import confusion_matrix
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tensorflow.keras.applications import vgg16
#from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Input, Dense, Flatten
from tensorflow.keras.utils import load_img, img_to_array
from sklearn.metrics import confusion_matrix
model = tf.keras.models.load_model('my_model.keras')
import gradio as gr
import numpy as np
from PIL import Image
def sepia(input_img_path):
img = load_img(input_img_path,target_size=(224,224))
img = img_to_array(img)
img = img / 255
img = img.reshape(1,224,224,3)
p = (model.predict(img)>=0.5).astype(int)[0][0]
if p==0:
return "Men"
else:
return "women"
demo = gr.Interface(fn=sepia,inputs= gr.Image(type="filepath",height=200,width=300),outputs="text")
demo.launch()