JuyeopDang's picture
Upload 35 files
5ab5cab verified
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/attend.py
from functools import wraps
from packaging import version
from collections import namedtuple
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from functools import partial
# constants
AttentionConfig = namedtuple('AttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
def forward(self, x):
return F.normalize(x, dim = 1) * self.g * (x.shape[1] ** 0.5)
# main class
class Attend(nn.Module):
def __init__(
self,
dropout = 0.,
flash = False,
scale = None
):
super().__init__()
self.dropout = dropout
self.scale = scale
self.attn_dropout = nn.Dropout(dropout)
self.flash = flash
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
# determine efficient attention configs for cuda and cpu
self.cpu_config = AttentionConfig(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not flash:
return
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
device_version = version.parse(f'{device_properties.major}.{device_properties.minor}')
if device_version > version.parse('8.0'):
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
self.cuda_config = AttentionConfig(True, False, False)
else:
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
self.cuda_config = AttentionConfig(False, True, True)
def flash_attn(self, q, k, v):
_, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
if exists(self.scale):
default_scale = q.shape[-1]
q = q * (self.scale / default_scale)
q, k, v = map(lambda t: t.contiguous(), (q, k, v))
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(
q, k, v,
dropout_p = self.dropout if self.training else 0.
)
return out
def forward(self, q, k, v):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
q_len, k_len, device = q.shape[-2], k.shape[-2], q.device
if self.flash:
return self.flash_attn(q, k, v)
scale = default(self.scale, q.shape[-1] ** -0.5)
# similarity
sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale
# attention
attn = sim.softmax(dim = -1)
attn = self.attn_dropout(attn)
# aggregate values
out = einsum(f"b h i j, b h j d -> b h i d", attn, v)
return out
class LinearAttention(nn.Module):
def __init__(self, dim, heads = 4, dim_head = 32):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
self.to_out = nn.Sequential(
nn.Conv2d(hidden_dim, dim, 1),
RMSNorm(dim)
)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x).chunk(3, dim = 1)
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv)
q = q.softmax(dim = -2)
k = k.softmax(dim = -1)
q = q * self.scale
context = torch.einsum('b h d n, b h e n -> b h d e', k, v)
out = torch.einsum('b h d e, b h d n -> b h e n', context, q)
out = rearrange(out, 'b h c (x y) -> b (h c) x y', h = self.heads, x = h, y = w)
return self.to_out(out)
class Attention(nn.Module):
def __init__(self, dim, heads = 4, dim_head = 32):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x).chunk(3, dim = 1)
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv)
q = q * self.scale
sim = einsum('b h d i, b h d j -> b h i j', q, k)
attn = sim.softmax(dim = -1)
out = einsum('b h i j, b h d j -> b h i d', attn, v)
out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w)
return self.to_out(out)