Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Dict, Generator, List, Union | |
from ...extras.constants import PEFT_METHODS | |
from ...extras.misc import torch_gc | |
from ...extras.packages import is_gradio_available | |
from ...train.tuner import export_model | |
from ..common import get_save_dir | |
from ..locales import ALERTS | |
if is_gradio_available(): | |
import gradio as gr | |
if TYPE_CHECKING: | |
from gradio.components import Component | |
from ..engine import Engine | |
GPTQ_BITS = ["8", "4", "3", "2"] | |
def can_quantize(checkpoint_path: Union[str, List[str]]) -> "gr.Dropdown": | |
if isinstance(checkpoint_path, list) and len(checkpoint_path) != 0: | |
return gr.Dropdown(value="none", interactive=False) | |
else: | |
return gr.Dropdown(interactive=True) | |
def save_model( | |
lang: str, | |
model_name: str, | |
model_path: str, | |
finetuning_type: str, | |
checkpoint_path: Union[str, List[str]], | |
template: str, | |
visual_inputs: bool, | |
export_size: int, | |
export_quantization_bit: int, | |
export_quantization_dataset: str, | |
export_device: str, | |
export_legacy_format: bool, | |
export_dir: str, | |
export_hub_model_id: str, | |
) -> Generator[str, None, None]: | |
error = "" | |
if not model_name: | |
error = ALERTS["err_no_model"][lang] | |
elif not model_path: | |
error = ALERTS["err_no_path"][lang] | |
elif not export_dir: | |
error = ALERTS["err_no_export_dir"][lang] | |
elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset: | |
error = ALERTS["err_no_dataset"][lang] | |
elif export_quantization_bit not in GPTQ_BITS and not checkpoint_path: | |
error = ALERTS["err_no_adapter"][lang] | |
elif export_quantization_bit in GPTQ_BITS and isinstance(checkpoint_path, list): | |
error = ALERTS["err_gptq_lora"][lang] | |
if error: | |
gr.Warning(error) | |
yield error | |
return | |
args = dict( | |
model_name_or_path=model_path, | |
finetuning_type=finetuning_type, | |
template=template, | |
visual_inputs=visual_inputs, | |
export_dir=export_dir, | |
export_hub_model_id=export_hub_model_id or None, | |
export_size=export_size, | |
export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None, | |
export_quantization_dataset=export_quantization_dataset, | |
export_device=export_device, | |
export_legacy_format=export_legacy_format, | |
) | |
if checkpoint_path: | |
if finetuning_type in PEFT_METHODS: # list | |
args["adapter_name_or_path"] = ",".join( | |
[get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path] | |
) | |
else: # str | |
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path) | |
yield ALERTS["info_exporting"][lang] | |
export_model(args) | |
torch_gc() | |
yield ALERTS["info_exported"][lang] | |
def create_export_tab(engine: "Engine") -> Dict[str, "Component"]: | |
with gr.Row(): | |
export_size = gr.Slider(minimum=1, maximum=100, value=1, step=1) | |
export_quantization_bit = gr.Dropdown(choices=["none"] + GPTQ_BITS, value="none") | |
export_quantization_dataset = gr.Textbox(value="data/c4_demo.json") | |
export_device = gr.Radio(choices=["cpu", "auto"], value="cpu") | |
export_legacy_format = gr.Checkbox() | |
with gr.Row(): | |
export_dir = gr.Textbox() | |
export_hub_model_id = gr.Textbox() | |
checkpoint_path: gr.Dropdown = engine.manager.get_elem_by_id("top.checkpoint_path") | |
checkpoint_path.change(can_quantize, [checkpoint_path], [export_quantization_bit], queue=False) | |
export_btn = gr.Button() | |
info_box = gr.Textbox(show_label=False, interactive=False) | |
export_btn.click( | |
save_model, | |
[ | |
engine.manager.get_elem_by_id("top.lang"), | |
engine.manager.get_elem_by_id("top.model_name"), | |
engine.manager.get_elem_by_id("top.model_path"), | |
engine.manager.get_elem_by_id("top.finetuning_type"), | |
engine.manager.get_elem_by_id("top.checkpoint_path"), | |
engine.manager.get_elem_by_id("top.template"), | |
engine.manager.get_elem_by_id("top.visual_inputs"), | |
export_size, | |
export_quantization_bit, | |
export_quantization_dataset, | |
export_device, | |
export_legacy_format, | |
export_dir, | |
export_hub_model_id, | |
], | |
[info_box], | |
) | |
return dict( | |
export_size=export_size, | |
export_quantization_bit=export_quantization_bit, | |
export_quantization_dataset=export_quantization_dataset, | |
export_device=export_device, | |
export_legacy_format=export_legacy_format, | |
export_dir=export_dir, | |
export_hub_model_id=export_hub_model_id, | |
export_btn=export_btn, | |
info_box=info_box, | |
) | |