Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import torch | |
from llamafactory.extras.misc import get_current_device | |
from llamafactory.hparams import get_train_args | |
from llamafactory.model import load_model, load_tokenizer | |
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") | |
TRAIN_ARGS = { | |
"model_name_or_path": TINY_LLAMA, | |
"stage": "sft", | |
"do_train": True, | |
"finetuning_type": "lora", | |
"lora_target": "all", | |
"dataset": "llamafactory/tiny-supervised-dataset", | |
"dataset_dir": "ONLINE", | |
"template": "llama3", | |
"cutoff_len": 1024, | |
"overwrite_cache": True, | |
"output_dir": "dummy_dir", | |
"overwrite_output_dir": True, | |
"fp16": True, | |
} | |
def test_checkpointing_enable(): | |
model_args, _, _, finetuning_args, _ = get_train_args({"disable_gradient_checkpointing": False, **TRAIN_ARGS}) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()): | |
assert getattr(module, "gradient_checkpointing") is True | |
def test_checkpointing_disable(): | |
model_args, _, _, finetuning_args, _ = get_train_args({"disable_gradient_checkpointing": True, **TRAIN_ARGS}) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()): | |
assert getattr(module, "gradient_checkpointing") is False | |
def test_upcast_layernorm(): | |
model_args, _, _, finetuning_args, _ = get_train_args({"upcast_layernorm": True, **TRAIN_ARGS}) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
for name, param in model.named_parameters(): | |
if param.ndim == 1 and "norm" in name: | |
assert param.dtype == torch.float32 | |
def test_upcast_lmhead_output(): | |
model_args, _, _, finetuning_args, _ = get_train_args({"upcast_lmhead_output": True, **TRAIN_ARGS}) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
inputs = torch.randn((1, 16), dtype=torch.float16, device=get_current_device()) | |
outputs: "torch.Tensor" = model.lm_head(inputs) | |
assert outputs.dtype == torch.float32 | |