Justinrune's picture
Upload folder using huggingface_hub
2852136 verified
raw
history blame
22.9 kB
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/ppo_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import sys
import warnings
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import torch
from accelerate.utils import DistributedDataParallelKwargs
from tqdm import tqdm
from transformers import GenerationConfig, Trainer, TrainerControl, TrainerState
from transformers.optimization import get_scheduler
from transformers.trainer_pt_utils import remove_dummy_checkpoint
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
from trl import PPOConfig, PPOTrainer
from trl.core import PPODecorators, logprobs_from_logits
from trl.models.utils import unwrap_model_for_generation
from ...extras.callbacks import FixValueHeadModelCallback, LogCallback
from ...extras.logging import get_logger
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
from .ppo_utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
if TYPE_CHECKING:
from datasets import Dataset
from transformers import (
DataCollatorWithPadding,
PreTrainedTokenizer,
ProcessorMixin,
Seq2SeqTrainingArguments,
TrainerCallback,
)
from trl import AutoModelForCausalLMWithValueHead
from ...hparams import FinetuningArguments, GeneratingArguments, ModelArguments
logger = get_logger(__name__)
class CustomPPOTrainer(PPOTrainer, Trainer):
r"""
Inherits PPOTrainer.
"""
def __init__(
self,
model_args: "ModelArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: List["TrainerCallback"],
model: "AutoModelForCausalLMWithValueHead",
reward_model: Optional["AutoModelForCausalLMWithValueHead"],
ref_model: Optional["AutoModelForCausalLMWithValueHead"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
dataset: "Dataset",
data_collator: "DataCollatorWithPadding",
):
backward_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
ppo_config = PPOConfig(
model_name=model_args.model_name_or_path,
learning_rate=training_args.learning_rate,
mini_batch_size=training_args.per_device_train_batch_size,
batch_size=backward_batch_size * finetuning_args.ppo_buffer_size,
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
ppo_epochs=finetuning_args.ppo_epochs,
max_grad_norm=training_args.max_grad_norm,
seed=training_args.seed,
optimize_device_cache=True,
target=finetuning_args.ppo_target,
use_score_scaling=finetuning_args.ppo_score_norm,
use_score_norm=finetuning_args.ppo_score_norm,
whiten_rewards=finetuning_args.ppo_whiten_rewards,
accelerator_kwargs={"step_scheduler_with_optimizer": False},
log_with=training_args.report_to[0] if training_args.report_to else None,
project_kwargs={"logging_dir": training_args.logging_dir},
)
# Add deepspeed config
ppo_config.accelerator_kwargs["kwargs_handlers"] = [
DistributedDataParallelKwargs(find_unused_parameters=training_args.ddp_find_unused_parameters)
]
if training_args.deepspeed_plugin is not None:
ppo_config.accelerator_kwargs["deepspeed_plugin"] = training_args.deepspeed_plugin
# Create optimizer and scheduler
if training_args.max_steps > 0:
num_training_steps = training_args.max_steps
else:
total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)
optimizer = self.create_optimizer(model, training_args, finetuning_args)
scheduler = self.create_scheduler(training_args, num_training_steps, optimizer)
PPOTrainer.__init__(
self,
config=ppo_config,
model=model,
ref_model=ref_model,
tokenizer=tokenizer,
dataset=dataset,
data_collator=data_collator,
lr_scheduler=scheduler,
)
self.args = training_args
self.model_args = model_args
self.finetuning_args = finetuning_args
self.reward_model = reward_model
self.current_device = get_current_device() # patch for deepspeed training
self.processor = processor
self.generation_config = GenerationConfig(
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
**generating_args.to_dict(),
)
self.state = TrainerState()
self.control = TrainerControl()
self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)
if self.args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
self.is_chatglm_model = getattr(unwrapped_model.config, "model_type", None) == "chatglm"
self.amp_context = torch.autocast(self.current_device.type, dtype=self.model_args.compute_dtype)
warnings.simplefilter("ignore") # remove gc warnings on ref model
if finetuning_args.reward_model_type == "full":
if self.is_deepspeed_enabled:
if not (
getattr(reward_model.pretrained_model, "is_loaded_in_8bit", False)
or getattr(reward_model.pretrained_model, "is_loaded_in_4bit", False)
): # quantized models are already set on the correct device
self.reward_model = self._prepare_deepspeed(self.reward_model)
else:
self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True)
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
r"""
Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
"""
if resume_from_checkpoint is not None:
raise ValueError("`resume_from_checkpoint` will be supported in the future version.")
total_train_batch_size = (
self.args.per_device_train_batch_size
* self.args.gradient_accumulation_steps
* self.finetuning_args.ppo_buffer_size
* self.args.world_size
)
if self.args.max_steps > 0:
num_examples = total_train_batch_size * self.args.max_steps
num_train_epochs = sys.maxsize
max_steps = self.args.max_steps
steps_in_epoch = self.args.max_steps
else:
len_dataloader = len(self.dataloader)
num_examples = len(self.dataset)
num_train_epochs = self.args.num_train_epochs
max_steps = math.ceil(num_train_epochs * len_dataloader)
steps_in_epoch = len_dataloader
self.state.max_steps = max_steps
self.state.num_train_epochs = num_train_epochs
self.state.is_local_process_zero = self.is_local_process_zero()
self.state.is_world_process_zero = self.is_world_process_zero()
if self.is_world_process_zero():
logger.info("***** Running training *****")
logger.info(" Num examples = {}".format(num_examples))
logger.info(" Num Epochs = {}".format(num_train_epochs))
logger.info(" Instantaneous batch size per device = {}".format(self.args.per_device_train_batch_size))
logger.info(
" Total train batch size (w. parallel, buffer, distributed & accumulation) = {}".format(
total_train_batch_size
)
)
logger.info(" Gradient Accumulation steps = {}".format(self.args.gradient_accumulation_steps))
logger.info(" Num optimization epochs per batch = {}".format(self.finetuning_args.ppo_epochs))
logger.info(" Total training steps = {}".format(max_steps))
logger.info(" Number of trainable parameters = {}".format(count_parameters(self.model)[0]))
dataiter = iter(self.dataloader)
loss_meter = AverageMeter()
reward_meter = AverageMeter()
self.log_callback.on_train_begin(self.args, self.state, self.control)
for step in tqdm(range(max_steps), disable=not self.is_local_process_zero()):
try:
batch = next(dataiter)
except StopIteration:
dataiter = iter(self.dataloader)
batch = next(dataiter)
# Get inputs
self.model.eval()
self.tokenizer.padding_side = "right" # change padding side
queries, responses, rewards = [], [], []
for idx in range(0, self.config.batch_size, self.config.mini_batch_size):
mini_batch_queries, mini_batch_responses = self.get_inputs(
batch[idx : idx + self.config.mini_batch_size]
)
mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses)
queries.extend(mini_batch_queries)
responses.extend(mini_batch_responses)
rewards.extend(mini_batch_rewards)
# Run PPO step
self.model.train()
stats = self.step(queries, responses, rewards)
self.tokenizer.padding_side = "left" # restore padding side
loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards))
reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))
if self.config.log_with is not None:
try:
batch["query"] = self.tokenizer.batch_decode(queries, skip_special_tokens=True)
batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True)
self.log_stats(stats, batch, rewards)
except Exception:
logger.warning("Failed to save stats due to unknown errors.")
self.state.global_step += 1
self.log_callback.on_step_end(self.args, self.state, self.control)
if self.is_local_process_zero() and (step + 1) % self.args.logging_steps == 0:
logs = dict(
loss=round(loss_meter.avg, 4),
reward=round(reward_meter.avg, 4),
learning_rate=stats["ppo/learning_rate"],
epoch=round(step / steps_in_epoch, 2),
)
tqdm.write(str(logs))
logs["step"] = step
self.state.log_history.append(logs)
self.log_callback.on_log(self.args, self.state, self.control)
loss_meter.reset()
reward_meter.reset()
if (step + 1) % self.args.save_steps == 0: # save checkpoint
self.save_model(
os.path.join(self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step))
)
self.save_callback.on_save(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
if self.control.should_epoch_stop or self.control.should_training_stop:
break
self.log_callback.on_train_end(self.args, self.state, self.control)
self.save_callback.on_train_end(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
def create_optimizer(
self,
model: "AutoModelForCausalLMWithValueHead",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
optimizer = create_custom_optimzer(model, training_args, finetuning_args)
if optimizer is None:
decay_params, nodecay_params = [], []
decay_param_names = self.get_decay_parameter_names(model)
for name, param in model.named_parameters():
if param.requires_grad:
if name in decay_param_names:
decay_params.append(param)
else:
nodecay_params.append(param)
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
param_groups = [
dict(params=nodecay_params),
dict(params=decay_params, weight_decay=training_args.weight_decay),
]
optimizer = optim_class(param_groups, **optim_kwargs)
return optimizer
def create_scheduler(
self, training_args: "Seq2SeqTrainingArguments", num_training_steps: int, optimizer: "torch.optim.Optimizer"
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(training_args, num_training_steps, optimizer)
lr_scheduler = get_scheduler(
training_args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
return lr_scheduler
@torch.no_grad()
def get_inputs(self, batch: Dict[str, "torch.Tensor"]) -> Tuple[List["torch.Tensor"], List["torch.Tensor"]]:
r"""
Generates model's responses given queries.
"""
if batch["input_ids"].size(0) == 1: # handle llama2 ppo with gradient accumulation > 1
start_index = (batch["input_ids"][0] != self.tokenizer.pad_token_id).nonzero()[0].item()
for k, v in batch.items():
batch[k] = v[:, start_index:]
with unwrap_model_for_generation(self.model, self.accelerator) as unwrapped_model:
unwrapped_model = self.accelerator.unwrap_model(self.model) # issue in trl v0.8.6
if self.model_args.upcast_layernorm:
layernorm_params = dump_layernorm(unwrapped_model)
generate_output: torch.Tensor = unwrapped_model.generate(
generation_config=self.generation_config, logits_processor=get_logits_processor(), **batch
)
if self.model_args.upcast_layernorm:
restore_layernorm(unwrapped_model, layernorm_params)
query = batch["input_ids"].detach().cpu()
response = generate_output[:, batch["input_ids"].size(-1) :].detach().cpu()
queries, responses = [], []
for i in range(len(query)):
query_start_index = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item()
response_index = (response[i] != self.tokenizer.pad_token_id).nonzero()
if len(response_index) == 0:
response_length = 1 # allow empty response
else:
response_length = response_index[-1].item() + 1
queries.append(query[i, query_start_index:]) # remove padding from left
responses.append(response[i, :response_length]) # remove padding from right
return queries, responses
@torch.no_grad()
def get_rewards(
self,
queries: List["torch.Tensor"],
responses: List["torch.Tensor"],
) -> List["torch.Tensor"]:
r"""
Computes scores using given reward model.
Both inputs and outputs are put on CPU.
"""
if self.finetuning_args.reward_model_type == "api":
token_ids = [torch.cat((q, r), dim=-1).tolist() for q, r in zip(queries, responses)]
messages = self.tokenizer.batch_decode(token_ids, skip_special_tokens=True)
return get_rewards_from_server(self.reward_model, messages)
batch = self.prepare_model_inputs(queries, responses)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
if self.finetuning_args.reward_model_type == "lora":
replace_model(unwrapped_model, target="reward")
reward_model = self.model
else:
reward_model = self.reward_model
with unwrap_model_for_generation(reward_model, self.accelerator), self.amp_context: # support bf16
_, _, values = reward_model(**batch, output_hidden_states=True, return_dict=True, use_cache=False)
if self.finetuning_args.reward_model_type == "lora":
replace_model(unwrapped_model, target="default")
if self.is_chatglm_model: # assume same architecture
values = torch.transpose(values, 0, 1)
rewards = []
for i in range(values.size(0)):
end_indexes = (batch["input_ids"][i] != self.tokenizer.pad_token_id).nonzero()
end_index = end_indexes[-1].item() if len(end_indexes) else 0
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type
return rewards
@PPODecorators.empty_device_cache()
def batched_forward_pass(
self,
model: "AutoModelForCausalLMWithValueHead",
queries: "torch.Tensor",
responses: "torch.Tensor",
model_inputs: Dict[str, Any],
return_logits: bool = False,
response_masks: Optional["torch.Tensor"] = None,
) -> Tuple["torch.Tensor", Optional["torch.Tensor"], "torch.Tensor", "torch.Tensor"]:
r"""
Calculates model outputs in multiple batches.
Subclass and override to inject custom behavior.
"""
bs = len(queries)
fbs = self.config.mini_batch_size
all_logprobs = []
all_logits = []
all_masks = []
all_values = []
for i in range(math.ceil(bs / fbs)):
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
query_batch = queries[i * fbs : (i + 1) * fbs]
response_batch = responses[i * fbs : (i + 1) * fbs]
if response_masks is not None:
response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
input_ids = input_kwargs["input_ids"]
attention_mask = input_kwargs["attention_mask"]
with self.amp_context: # support bf16
logits, _, values = model(**input_kwargs)
if self.is_chatglm_model:
values = torch.transpose(values, 0, 1)
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
masks = torch.zeros_like(attention_mask)
masks[:, :-1] = attention_mask[:, 1:]
for j in range(len(query_batch)):
start = len(query_batch[j]) - 1
if attention_mask[j, 0] == 0: # offset left padding
start += attention_mask[j, :].nonzero()[0].item()
end = start + len(response_batch[j])
if response_masks is not None:
response_masks_batch = torch.cat((torch.zeros_like(query_batch[j]), response_masks_batch[j]))[1:]
masks[j, :start] = 0
masks[j, end:] = 0
if response_masks is not None:
masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]
if return_logits:
all_logits.append(logits)
else:
del logits
all_values.append(values)
all_logprobs.append(logprobs)
all_masks.append(masks)
return (
torch.cat(all_logprobs),
torch.cat(all_logits)[:, :-1] if return_logits else None,
torch.cat(all_values)[:, :-1],
torch.cat(all_masks)[:, :-1],
)
def save_model(self, output_dir: Optional[str] = None) -> None:
r"""
Saves model checkpoint.
Subclass and override to inject custom behavior.
"""
if output_dir is None:
output_dir = self.args.output_dir
if self.is_fsdp_enabled or self.is_deepspeed_enabled:
try:
state_dict = self.accelerator.get_state_dict(self.model) # must be called at all ranks
if self.args.should_save:
self._save(output_dir, state_dict=state_dict)
except ValueError:
logger.warning(
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
" use zero_to_fp32.py to recover weights"
)
if self.args.should_save:
self._save(output_dir, state_dict={})
# remove the dummy state_dict
remove_dummy_checkpoint(self.args.should_save, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
self.model.save_checkpoint(output_dir)
elif self.args.should_save:
self._save(output_dir)
if self.processor is not None and self.args.should_save:
output_dir = output_dir if output_dir is not None else self.args.output_dir
getattr(self.processor, "image_processor").save_pretrained(output_dir)