Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import os | |
import sys | |
from typing import TYPE_CHECKING, Literal, Optional, Union | |
import numpy as np | |
from datasets import load_dataset, load_from_disk | |
from ..extras.constants import FILEEXT2TYPE | |
from ..extras.logging import get_logger | |
from ..extras.misc import has_tokenized_data | |
from .aligner import align_dataset | |
from .data_utils import merge_dataset | |
from .parser import get_dataset_list | |
from .preprocess import get_preprocess_and_print_func | |
from .template import get_template_and_fix_tokenizer | |
if TYPE_CHECKING: | |
from datasets import Dataset, IterableDataset | |
from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments | |
from ..hparams import DataArguments, ModelArguments | |
from .parser import DatasetAttr | |
logger = get_logger(__name__) | |
def load_single_dataset( | |
dataset_attr: "DatasetAttr", | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
) -> Union["Dataset", "IterableDataset"]: | |
logger.info("Loading dataset {}...".format(dataset_attr)) | |
data_path, data_name, data_dir, data_files = None, None, None, None | |
if dataset_attr.load_from in ["hf_hub", "ms_hub"]: | |
data_path = dataset_attr.dataset_name | |
data_name = dataset_attr.subset | |
data_dir = dataset_attr.folder | |
elif dataset_attr.load_from == "script": | |
data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) | |
data_name = dataset_attr.subset | |
data_dir = dataset_attr.folder | |
elif dataset_attr.load_from == "file": | |
data_files = [] | |
local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) | |
if os.path.isdir(local_path): # is directory | |
for file_name in os.listdir(local_path): | |
data_files.append(os.path.join(local_path, file_name)) | |
if data_path is None: | |
data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None) | |
elif data_path != FILEEXT2TYPE.get(file_name.split(".")[-1], None): | |
raise ValueError("File types should be identical.") | |
elif os.path.isfile(local_path): # is file | |
data_files.append(local_path) | |
data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None) | |
else: | |
raise ValueError("File {} not found.".format(local_path)) | |
if data_path is None: | |
raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys()))) | |
else: | |
raise NotImplementedError("Unknown load type: {}.".format(dataset_attr.load_from)) | |
if dataset_attr.load_from == "ms_hub": | |
try: | |
from modelscope import MsDataset | |
from modelscope.utils.config_ds import MS_DATASETS_CACHE | |
cache_dir = model_args.cache_dir or MS_DATASETS_CACHE | |
dataset = MsDataset.load( | |
dataset_name=data_path, | |
subset_name=data_name, | |
data_dir=data_dir, | |
data_files=data_files, | |
split=data_args.split, | |
cache_dir=cache_dir, | |
token=model_args.ms_hub_token, | |
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")), | |
) | |
if isinstance(dataset, MsDataset): | |
dataset = dataset.to_hf_dataset() | |
except ImportError: | |
raise ImportError("Please install modelscope via `pip install modelscope -U`") | |
else: | |
if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0 | |
kwargs = {"trust_remote_code": True} | |
else: | |
kwargs = {} | |
dataset = load_dataset( | |
path=data_path, | |
name=data_name, | |
data_dir=data_dir, | |
data_files=data_files, | |
split=data_args.split, | |
cache_dir=model_args.cache_dir, | |
token=model_args.hf_hub_token, | |
streaming=(data_args.streaming and (dataset_attr.load_from != "file")), | |
**kwargs, | |
) | |
if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True | |
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter | |
if dataset_attr.num_samples is not None and not data_args.streaming: | |
target_num = dataset_attr.num_samples | |
indexes = np.random.permutation(len(dataset))[:target_num] | |
target_num -= len(indexes) | |
if target_num > 0: | |
expand_indexes = np.random.choice(len(dataset), target_num) | |
indexes = np.concatenate((indexes, expand_indexes), axis=0) | |
assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched." | |
dataset = dataset.select(indexes) | |
logger.info("Sampled {} examples from dataset {}.".format(dataset_attr.num_samples, dataset_attr)) | |
if data_args.max_samples is not None: # truncate dataset | |
max_samples = min(data_args.max_samples, len(dataset)) | |
dataset = dataset.select(range(max_samples)) | |
return align_dataset(dataset, dataset_attr, data_args, training_args) | |
def get_dataset( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
stage: Literal["pt", "sft", "rm", "ppo", "kto"], | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"] = None, | |
) -> Union["Dataset", "IterableDataset"]: | |
template = get_template_and_fix_tokenizer(tokenizer, data_args.template) | |
if data_args.train_on_prompt and template.efficient_eos: | |
raise ValueError("Current template does not support `train_on_prompt`.") | |
# Load tokenized dataset | |
if data_args.tokenized_path is not None: | |
if has_tokenized_data(data_args.tokenized_path): | |
logger.warning("Loading dataset from disk will ignore other data arguments.") | |
dataset = load_from_disk(data_args.tokenized_path) | |
logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path)) | |
if data_args.streaming: | |
dataset = dataset.to_iterable_dataset() | |
return dataset | |
if data_args.streaming: | |
raise ValueError("Turn off `streaming` when saving dataset to disk.") | |
with training_args.main_process_first(desc="load dataset"): | |
all_datasets = [] | |
for dataset_attr in get_dataset_list(data_args): | |
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True): | |
raise ValueError("The dataset is not applicable in the current training stage.") | |
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args, training_args)) | |
dataset = merge_dataset(all_datasets, data_args, training_args) | |
with training_args.main_process_first(desc="pre-process dataset"): | |
preprocess_func, print_function = get_preprocess_and_print_func( | |
data_args, training_args, stage, template, tokenizer, processor | |
) | |
column_names = list(next(iter(dataset)).keys()) | |
kwargs = {} | |
if not data_args.streaming: | |
kwargs = dict( | |
num_proc=data_args.preprocessing_num_workers, | |
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0), | |
desc="Running tokenizer on dataset", | |
) | |
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs) | |
if data_args.tokenized_path is not None: | |
if training_args.should_save: | |
dataset.save_to_disk(data_args.tokenized_path) | |
logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path)) | |
logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path)) | |
sys.exit(0) | |
if training_args.should_log: | |
try: | |
print_function(next(iter(dataset))) | |
except StopIteration: | |
if stage == "pt": | |
raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.") | |
else: | |
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.") | |
return dataset | |