Justinrune's picture
Upload folder using huggingface_hub
2852136 verified
raw
history blame
2.67 kB
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, dataclass, field
from typing import Any, Dict, Optional
@dataclass
class GeneratingArguments:
r"""
Arguments pertaining to specify the decoding parameters.
"""
do_sample: bool = field(
default=True,
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."},
)
temperature: float = field(
default=0.95,
metadata={"help": "The value used to modulate the next token probabilities."},
)
top_p: float = field(
default=0.7,
metadata={
"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."
},
)
top_k: int = field(
default=50,
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."},
)
num_beams: int = field(
default=1,
metadata={"help": "Number of beams for beam search. 1 means no beam search."},
)
max_length: int = field(
default=1024,
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."},
)
max_new_tokens: int = field(
default=1024,
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."},
)
repetition_penalty: float = field(
default=1.0,
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."},
)
length_penalty: float = field(
default=1.0,
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."},
)
default_system: Optional[str] = field(
default=None,
metadata={"help": "Default system message to use in chat completion."},
)
def to_dict(self) -> Dict[str, Any]:
args = asdict(self)
if args.get("max_new_tokens", -1) > 0:
args.pop("max_length", None)
else:
args.pop("max_new_tokens", None)
return args