Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple | |
from ...extras.logging import get_logger | |
from ..data_utils import Role | |
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer, ProcessorMixin | |
from ...hparams import DataArguments | |
from ..template import Template | |
logger = get_logger(__name__) | |
def _encode_unsupervised_example( | |
prompt: Sequence[Dict[str, str]], | |
response: Sequence[Dict[str, str]], | |
system: Optional[str], | |
tools: Optional[str], | |
template: "Template", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
data_args: "DataArguments", | |
) -> Tuple[List[int], List[int]]: | |
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models | |
prompt[0]["content"] = template.image_token + prompt[0]["content"] | |
if len(response) == 1: | |
messages = prompt + response | |
else: | |
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}] | |
input_ids, labels = template.encode_oneturn( | |
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len | |
) | |
if template.efficient_eos: | |
labels += [tokenizer.eos_token_id] | |
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models | |
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) | |
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids | |
return input_ids, labels | |
def preprocess_unsupervised_dataset( | |
examples: Dict[str, List[Any]], | |
template: "Template", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
data_args: "DataArguments", | |
) -> Dict[str, List[List[int]]]: | |
# build inputs with format `<bos> X` and labels with format `Y <eos>` | |
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} | |
if processor is not None: | |
model_inputs["pixel_values"] = [] | |
if hasattr(processor, "image_seq_length"): # paligemma models | |
model_inputs["token_type_ids"] = [] | |
for i in range(len(examples["prompt"])): | |
if len(examples["prompt"][i]) % 2 != 1: | |
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) | |
continue | |
input_ids, labels = _encode_unsupervised_example( | |
prompt=examples["prompt"][i], | |
response=examples["response"][i], | |
system=examples["system"][i], | |
tools=examples["tools"][i], | |
template=template, | |
tokenizer=tokenizer, | |
processor=processor, | |
data_args=data_args, | |
) | |
model_inputs["input_ids"].append(input_ids) | |
model_inputs["attention_mask"].append([1] * len(input_ids)) | |
model_inputs["labels"].append(labels) | |
if processor is not None: | |
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) | |
if hasattr(processor, "image_seq_length"): # paligemma models | |
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) | |
return model_inputs | |
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: | |
print("input_ids:\n{}".format(example["input_ids"])) | |
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) | |