Spaces:
Running
Running
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's transformers library. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from itertools import chain | |
from typing import TYPE_CHECKING, Any, Dict, List | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer | |
from ...hparams import DataArguments | |
def preprocess_pretrain_dataset( | |
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments" | |
) -> Dict[str, List[List[int]]]: | |
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled | |
eos_token = "<|end_of_text|>" if data_args.template == "llama3" else tokenizer.eos_token | |
text_examples = [messages[0]["content"] + eos_token for messages in examples["prompt"]] | |
if not data_args.packing: | |
if data_args.template == "gemma": | |
text_examples = [tokenizer.bos_token + example for example in text_examples] | |
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len, truncation=True) | |
else: | |
tokenized_examples = tokenizer(text_examples, add_special_tokens=False) | |
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()} | |
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]]) | |
block_size = data_args.cutoff_len | |
total_length = (total_length // block_size) * block_size | |
result = { | |
k: [t[i : i + block_size] for i in range(0, total_length, block_size)] | |
for k, t in concatenated_examples.items() | |
} | |
if data_args.template == "gemma": | |
for i in range(len(result["input_ids"])): | |
result["input_ids"][i][0] = tokenizer.bos_token_id | |
return result | |