Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
This code contains the spectrogram and Hybrid version of Demucs. | |
""" | |
from copy import deepcopy | |
import math | |
import typing as tp | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from .filtering import wiener | |
from .demucs import DConv, rescale_module | |
from .states import capture_init | |
from .spec import spectro, ispectro | |
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.): | |
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input. | |
If this is the case, we insert extra 0 padding to the right before the reflection happen.""" | |
x0 = x | |
length = x.shape[-1] | |
padding_left, padding_right = paddings | |
if mode == 'reflect': | |
max_pad = max(padding_left, padding_right) | |
if length <= max_pad: | |
extra_pad = max_pad - length + 1 | |
extra_pad_right = min(padding_right, extra_pad) | |
extra_pad_left = extra_pad - extra_pad_right | |
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right) | |
x = F.pad(x, (extra_pad_left, extra_pad_right)) | |
out = F.pad(x, paddings, mode, value) | |
assert out.shape[-1] == length + padding_left + padding_right | |
assert (out[..., padding_left: padding_left + length] == x0).all() | |
return out | |
class ScaledEmbedding(nn.Module): | |
""" | |
Boost learning rate for embeddings (with `scale`). | |
Also, can make embeddings continuous with `smooth`. | |
""" | |
def __init__(self, num_embeddings: int, embedding_dim: int, | |
scale: float = 10., smooth=False): | |
super().__init__() | |
self.embedding = nn.Embedding(num_embeddings, embedding_dim) | |
if smooth: | |
weight = torch.cumsum(self.embedding.weight.data, dim=0) | |
# when summing gaussian, overscale raises as sqrt(n), so we nornalize by that. | |
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None] | |
self.embedding.weight.data[:] = weight | |
self.embedding.weight.data /= scale | |
self.scale = scale | |
def weight(self): | |
return self.embedding.weight * self.scale | |
def forward(self, x): | |
out = self.embedding(x) * self.scale | |
return out | |
class HEncLayer(nn.Module): | |
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False, | |
freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True, | |
rewrite=True): | |
"""Encoder layer. This used both by the time and the frequency branch. | |
Args: | |
chin: number of input channels. | |
chout: number of output channels. | |
norm_groups: number of groups for group norm. | |
empty: used to make a layer with just the first conv. this is used | |
before merging the time and freq. branches. | |
freq: this is acting on frequencies. | |
dconv: insert DConv residual branches. | |
norm: use GroupNorm. | |
context: context size for the 1x1 conv. | |
dconv_kw: list of kwargs for the DConv class. | |
pad: pad the input. Padding is done so that the output size is | |
always the input size / stride. | |
rewrite: add 1x1 conv at the end of the layer. | |
""" | |
super().__init__() | |
norm_fn = lambda d: nn.Identity() # noqa | |
if norm: | |
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa | |
if pad: | |
pad = kernel_size // 4 | |
else: | |
pad = 0 | |
klass = nn.Conv1d | |
self.freq = freq | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.empty = empty | |
self.norm = norm | |
self.pad = pad | |
if freq: | |
kernel_size = [kernel_size, 1] | |
stride = [stride, 1] | |
pad = [pad, 0] | |
klass = nn.Conv2d | |
self.conv = klass(chin, chout, kernel_size, stride, pad) | |
if self.empty: | |
return | |
self.norm1 = norm_fn(chout) | |
self.rewrite = None | |
if rewrite: | |
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context) | |
self.norm2 = norm_fn(2 * chout) | |
self.dconv = None | |
if dconv: | |
self.dconv = DConv(chout, **dconv_kw) | |
def forward(self, x, inject=None): | |
""" | |
`inject` is used to inject the result from the time branch into the frequency branch, | |
when both have the same stride. | |
""" | |
if not self.freq and x.dim() == 4: | |
B, C, Fr, T = x.shape | |
x = x.view(B, -1, T) | |
if not self.freq: | |
le = x.shape[-1] | |
if not le % self.stride == 0: | |
x = F.pad(x, (0, self.stride - (le % self.stride))) | |
y = self.conv(x) | |
if self.empty: | |
return y | |
if inject is not None: | |
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape) | |
if inject.dim() == 3 and y.dim() == 4: | |
inject = inject[:, :, None] | |
y = y + inject | |
y = F.gelu(self.norm1(y)) | |
if self.dconv: | |
if self.freq: | |
B, C, Fr, T = y.shape | |
y = y.permute(0, 2, 1, 3).reshape(-1, C, T) | |
y = self.dconv(y) | |
if self.freq: | |
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3) | |
if self.rewrite: | |
z = self.norm2(self.rewrite(y)) | |
z = F.glu(z, dim=1) | |
else: | |
z = y | |
return z | |
class MultiWrap(nn.Module): | |
""" | |
Takes one layer and replicate it N times. each replica will act | |
on a frequency band. All is done so that if the N replica have the same weights, | |
then this is exactly equivalent to applying the original module on all frequencies. | |
This is a bit over-engineered to avoid edge artifacts when splitting | |
the frequency bands, but it is possible the naive implementation would work as well... | |
""" | |
def __init__(self, layer, split_ratios): | |
""" | |
Args: | |
layer: module to clone, must be either HEncLayer or HDecLayer. | |
split_ratios: list of float indicating which ratio to keep for each band. | |
""" | |
super().__init__() | |
self.split_ratios = split_ratios | |
self.layers = nn.ModuleList() | |
self.conv = isinstance(layer, HEncLayer) | |
assert not layer.norm | |
assert layer.freq | |
assert layer.pad | |
if not self.conv: | |
assert not layer.context_freq | |
for k in range(len(split_ratios) + 1): | |
lay = deepcopy(layer) | |
if self.conv: | |
lay.conv.padding = (0, 0) | |
else: | |
lay.pad = False | |
for m in lay.modules(): | |
if hasattr(m, 'reset_parameters'): | |
m.reset_parameters() | |
self.layers.append(lay) | |
def forward(self, x, skip=None, length=None): | |
B, C, Fr, T = x.shape | |
ratios = list(self.split_ratios) + [1] | |
start = 0 | |
outs = [] | |
for ratio, layer in zip(ratios, self.layers): | |
if self.conv: | |
pad = layer.kernel_size // 4 | |
if ratio == 1: | |
limit = Fr | |
frames = -1 | |
else: | |
limit = int(round(Fr * ratio)) | |
le = limit - start | |
if start == 0: | |
le += pad | |
frames = round((le - layer.kernel_size) / layer.stride + 1) | |
limit = start + (frames - 1) * layer.stride + layer.kernel_size | |
if start == 0: | |
limit -= pad | |
assert limit - start > 0, (limit, start) | |
assert limit <= Fr, (limit, Fr) | |
y = x[:, :, start:limit, :] | |
if start == 0: | |
y = F.pad(y, (0, 0, pad, 0)) | |
if ratio == 1: | |
y = F.pad(y, (0, 0, 0, pad)) | |
outs.append(layer(y)) | |
start = limit - layer.kernel_size + layer.stride | |
else: | |
if ratio == 1: | |
limit = Fr | |
else: | |
limit = int(round(Fr * ratio)) | |
last = layer.last | |
layer.last = True | |
y = x[:, :, start:limit] | |
s = skip[:, :, start:limit] | |
out, _ = layer(y, s, None) | |
if outs: | |
outs[-1][:, :, -layer.stride:] += ( | |
out[:, :, :layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1)) | |
out = out[:, :, layer.stride:] | |
if ratio == 1: | |
out = out[:, :, :-layer.stride // 2, :] | |
if start == 0: | |
out = out[:, :, layer.stride // 2:, :] | |
outs.append(out) | |
layer.last = last | |
start = limit | |
out = torch.cat(outs, dim=2) | |
if not self.conv and not last: | |
out = F.gelu(out) | |
if self.conv: | |
return out | |
else: | |
return out, None | |
class HDecLayer(nn.Module): | |
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False, | |
freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True, | |
context_freq=True, rewrite=True): | |
""" | |
Same as HEncLayer but for decoder. See `HEncLayer` for documentation. | |
""" | |
super().__init__() | |
norm_fn = lambda d: nn.Identity() # noqa | |
if norm: | |
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa | |
if pad: | |
pad = kernel_size // 4 | |
else: | |
pad = 0 | |
self.pad = pad | |
self.last = last | |
self.freq = freq | |
self.chin = chin | |
self.empty = empty | |
self.stride = stride | |
self.kernel_size = kernel_size | |
self.norm = norm | |
self.context_freq = context_freq | |
klass = nn.Conv1d | |
klass_tr = nn.ConvTranspose1d | |
if freq: | |
kernel_size = [kernel_size, 1] | |
stride = [stride, 1] | |
klass = nn.Conv2d | |
klass_tr = nn.ConvTranspose2d | |
self.conv_tr = klass_tr(chin, chout, kernel_size, stride) | |
self.norm2 = norm_fn(chout) | |
if self.empty: | |
return | |
self.rewrite = None | |
if rewrite: | |
if context_freq: | |
self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context) | |
else: | |
self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1, | |
[0, context]) | |
self.norm1 = norm_fn(2 * chin) | |
self.dconv = None | |
if dconv: | |
self.dconv = DConv(chin, **dconv_kw) | |
def forward(self, x, skip, length): | |
if self.freq and x.dim() == 3: | |
B, C, T = x.shape | |
x = x.view(B, self.chin, -1, T) | |
if not self.empty: | |
x = x + skip | |
if self.rewrite: | |
y = F.glu(self.norm1(self.rewrite(x)), dim=1) | |
else: | |
y = x | |
if self.dconv: | |
if self.freq: | |
B, C, Fr, T = y.shape | |
y = y.permute(0, 2, 1, 3).reshape(-1, C, T) | |
y = self.dconv(y) | |
if self.freq: | |
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3) | |
else: | |
y = x | |
assert skip is None | |
z = self.norm2(self.conv_tr(y)) | |
if self.freq: | |
if self.pad: | |
z = z[..., self.pad:-self.pad, :] | |
else: | |
z = z[..., self.pad:self.pad + length] | |
assert z.shape[-1] == length, (z.shape[-1], length) | |
if not self.last: | |
z = F.gelu(z) | |
return z, y | |
class HDemucs(nn.Module): | |
""" | |
Spectrogram and hybrid Demucs model. | |
The spectrogram model has the same structure as Demucs, except the first few layers are over the | |
frequency axis, until there is only 1 frequency, and then it moves to time convolutions. | |
Frequency layers can still access information across time steps thanks to the DConv residual. | |
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride | |
as the frequency branch and then the two are combined. The opposite happens in the decoder. | |
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]), | |
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on | |
Open Unmix implementation [Stoter et al. 2019]. | |
The loss is always on the temporal domain, by backpropagating through the above | |
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks | |
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram | |
contribution, without changing the one from the waveform, which will lead to worse performance. | |
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve. | |
CaC on the other hand provides similar performance for hybrid, and works naturally with | |
hybrid models. | |
This model also uses frequency embeddings are used to improve efficiency on convolutions | |
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf). | |
Unlike classic Demucs, there is no resampling here, and normalization is always applied. | |
""" | |
def __init__(self, | |
sources, | |
# Channels | |
audio_channels=2, | |
channels=48, | |
channels_time=None, | |
growth=2, | |
# STFT | |
nfft=4096, | |
wiener_iters=0, | |
end_iters=0, | |
wiener_residual=False, | |
cac=True, | |
# Main structure | |
depth=6, | |
rewrite=True, | |
hybrid=True, | |
hybrid_old=False, | |
# Frequency branch | |
multi_freqs=None, | |
multi_freqs_depth=2, | |
freq_emb=0.2, | |
emb_scale=10, | |
emb_smooth=True, | |
# Convolutions | |
kernel_size=8, | |
time_stride=2, | |
stride=4, | |
context=1, | |
context_enc=0, | |
# Normalization | |
norm_starts=4, | |
norm_groups=4, | |
# DConv residual branch | |
dconv_mode=1, | |
dconv_depth=2, | |
dconv_comp=4, | |
dconv_attn=4, | |
dconv_lstm=4, | |
dconv_init=1e-4, | |
# Weight init | |
rescale=0.1, | |
# Metadata | |
samplerate=44100, | |
segment=4 * 10): | |
""" | |
Args: | |
sources (list[str]): list of source names. | |
audio_channels (int): input/output audio channels. | |
channels (int): initial number of hidden channels. | |
channels_time: if not None, use a different `channels` value for the time branch. | |
growth: increase the number of hidden channels by this factor at each layer. | |
nfft: number of fft bins. Note that changing this require careful computation of | |
various shape parameters and will not work out of the box for hybrid models. | |
wiener_iters: when using Wiener filtering, number of iterations at test time. | |
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`. | |
wiener_residual: add residual source before wiener filtering. | |
cac: uses complex as channels, i.e. complex numbers are 2 channels each | |
in input and output. no further processing is done before ISTFT. | |
depth (int): number of layers in the encoder and in the decoder. | |
rewrite (bool): add 1x1 convolution to each layer. | |
hybrid (bool): make a hybrid time/frequency domain, otherwise frequency only. | |
hybrid_old: some models trained for MDX had a padding bug. This replicates | |
this bug to avoid retraining them. | |
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`. | |
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost | |
layers will be wrapped. | |
freq_emb: add frequency embedding after the first frequency layer if > 0, | |
the actual value controls the weight of the embedding. | |
emb_scale: equivalent to scaling the embedding learning rate | |
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies). | |
kernel_size: kernel_size for encoder and decoder layers. | |
stride: stride for encoder and decoder layers. | |
time_stride: stride for the final time layer, after the merge. | |
context: context for 1x1 conv in the decoder. | |
context_enc: context for 1x1 conv in the encoder. | |
norm_starts: layer at which group norm starts being used. | |
decoder layers are numbered in reverse order. | |
norm_groups: number of groups for group norm. | |
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both. | |
dconv_depth: depth of residual DConv branch. | |
dconv_comp: compression of DConv branch. | |
dconv_attn: adds attention layers in DConv branch starting at this layer. | |
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer. | |
dconv_init: initial scale for the DConv branch LayerScale. | |
rescale: weight recaling trick | |
""" | |
super().__init__() | |
self.cac = cac | |
self.wiener_residual = wiener_residual | |
self.audio_channels = audio_channels | |
self.sources = sources | |
self.kernel_size = kernel_size | |
self.context = context | |
self.stride = stride | |
self.depth = depth | |
self.channels = channels | |
self.samplerate = samplerate | |
self.segment = segment | |
self.nfft = nfft | |
self.hop_length = nfft // 4 | |
self.wiener_iters = wiener_iters | |
self.end_iters = end_iters | |
self.freq_emb = None | |
self.hybrid = hybrid | |
self.hybrid_old = hybrid_old | |
if hybrid_old: | |
assert hybrid, "hybrid_old must come with hybrid=True" | |
if hybrid: | |
assert wiener_iters == end_iters | |
self.encoder = nn.ModuleList() | |
self.decoder = nn.ModuleList() | |
if hybrid: | |
self.tencoder = nn.ModuleList() | |
self.tdecoder = nn.ModuleList() | |
chin = audio_channels | |
chin_z = chin # number of channels for the freq branch | |
if self.cac: | |
chin_z *= 2 | |
chout = channels_time or channels | |
chout_z = channels | |
freqs = nfft // 2 | |
for index in range(depth): | |
lstm = index >= dconv_lstm | |
attn = index >= dconv_attn | |
norm = index >= norm_starts | |
freq = freqs > 1 | |
stri = stride | |
ker = kernel_size | |
if not freq: | |
assert freqs == 1 | |
ker = time_stride * 2 | |
stri = time_stride | |
pad = True | |
last_freq = False | |
if freq and freqs <= kernel_size: | |
ker = freqs | |
pad = False | |
last_freq = True | |
kw = { | |
'kernel_size': ker, | |
'stride': stri, | |
'freq': freq, | |
'pad': pad, | |
'norm': norm, | |
'rewrite': rewrite, | |
'norm_groups': norm_groups, | |
'dconv_kw': { | |
'lstm': lstm, | |
'attn': attn, | |
'depth': dconv_depth, | |
'compress': dconv_comp, | |
'init': dconv_init, | |
'gelu': True, | |
} | |
} | |
kwt = dict(kw) | |
kwt['freq'] = 0 | |
kwt['kernel_size'] = kernel_size | |
kwt['stride'] = stride | |
kwt['pad'] = True | |
kw_dec = dict(kw) | |
multi = False | |
if multi_freqs and index < multi_freqs_depth: | |
multi = True | |
kw_dec['context_freq'] = False | |
if last_freq: | |
chout_z = max(chout, chout_z) | |
chout = chout_z | |
enc = HEncLayer(chin_z, chout_z, | |
dconv=dconv_mode & 1, context=context_enc, **kw) | |
if hybrid and freq: | |
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc, | |
empty=last_freq, **kwt) | |
self.tencoder.append(tenc) | |
if multi: | |
enc = MultiWrap(enc, multi_freqs) | |
self.encoder.append(enc) | |
if index == 0: | |
chin = self.audio_channels * len(self.sources) | |
chin_z = chin | |
if self.cac: | |
chin_z *= 2 | |
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2, | |
last=index == 0, context=context, **kw_dec) | |
if multi: | |
dec = MultiWrap(dec, multi_freqs) | |
if hybrid and freq: | |
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq, | |
last=index == 0, context=context, **kwt) | |
self.tdecoder.insert(0, tdec) | |
self.decoder.insert(0, dec) | |
chin = chout | |
chin_z = chout_z | |
chout = int(growth * chout) | |
chout_z = int(growth * chout_z) | |
if freq: | |
if freqs <= kernel_size: | |
freqs = 1 | |
else: | |
freqs //= stride | |
if index == 0 and freq_emb: | |
self.freq_emb = ScaledEmbedding( | |
freqs, chin_z, smooth=emb_smooth, scale=emb_scale) | |
self.freq_emb_scale = freq_emb | |
if rescale: | |
rescale_module(self, reference=rescale) | |
def _spec(self, x): | |
hl = self.hop_length | |
nfft = self.nfft | |
x0 = x # noqa | |
if self.hybrid: | |
# We re-pad the signal in order to keep the property | |
# that the size of the output is exactly the size of the input | |
# divided by the stride (here hop_length), when divisible. | |
# This is achieved by padding by 1/4th of the kernel size (here nfft). | |
# which is not supported by torch.stft. | |
# Having all convolution operations follow this convention allow to easily | |
# align the time and frequency branches later on. | |
assert hl == nfft // 4 | |
le = int(math.ceil(x.shape[-1] / hl)) | |
pad = hl // 2 * 3 | |
if not self.hybrid_old: | |
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode='reflect') | |
else: | |
x = pad1d(x, (pad, pad + le * hl - x.shape[-1])) | |
z = spectro(x, nfft, hl)[..., :-1, :] | |
if self.hybrid: | |
assert z.shape[-1] == le + 4, (z.shape, x.shape, le) | |
z = z[..., 2:2+le] | |
return z | |
def _ispec(self, z, length=None, scale=0): | |
hl = self.hop_length // (4 ** scale) | |
z = F.pad(z, (0, 0, 0, 1)) | |
if self.hybrid: | |
z = F.pad(z, (2, 2)) | |
pad = hl // 2 * 3 | |
if not self.hybrid_old: | |
le = hl * int(math.ceil(length / hl)) + 2 * pad | |
else: | |
le = hl * int(math.ceil(length / hl)) | |
x = ispectro(z, hl, length=le) | |
if not self.hybrid_old: | |
x = x[..., pad:pad + length] | |
else: | |
x = x[..., :length] | |
else: | |
x = ispectro(z, hl, length) | |
return x | |
def _magnitude(self, z): | |
# return the magnitude of the spectrogram, except when cac is True, | |
# in which case we just move the complex dimension to the channel one. | |
if self.cac: | |
B, C, Fr, T = z.shape | |
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3) | |
m = m.reshape(B, C * 2, Fr, T) | |
else: | |
m = z.abs() | |
return m | |
def _mask(self, z, m): | |
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`. | |
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored. | |
niters = self.wiener_iters | |
if self.cac: | |
B, S, C, Fr, T = m.shape | |
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3) | |
out = torch.view_as_complex(out.contiguous()) | |
return out | |
if self.training: | |
niters = self.end_iters | |
if niters < 0: | |
z = z[:, None] | |
return z / (1e-8 + z.abs()) * m | |
else: | |
return self._wiener(m, z, niters) | |
def _wiener(self, mag_out, mix_stft, niters): | |
# apply wiener filtering from OpenUnmix. | |
init = mix_stft.dtype | |
wiener_win_len = 300 | |
residual = self.wiener_residual | |
B, S, C, Fq, T = mag_out.shape | |
mag_out = mag_out.permute(0, 4, 3, 2, 1) | |
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1)) | |
outs = [] | |
for sample in range(B): | |
pos = 0 | |
out = [] | |
for pos in range(0, T, wiener_win_len): | |
frame = slice(pos, pos + wiener_win_len) | |
z_out = wiener( | |
mag_out[sample, frame], mix_stft[sample, frame], niters, | |
residual=residual) | |
out.append(z_out.transpose(-1, -2)) | |
outs.append(torch.cat(out, dim=0)) | |
out = torch.view_as_complex(torch.stack(outs, 0)) | |
out = out.permute(0, 4, 3, 2, 1).contiguous() | |
if residual: | |
out = out[:, :-1] | |
assert list(out.shape) == [B, S, C, Fq, T] | |
return out.to(init) | |
def forward(self, mix): | |
x = mix | |
length = x.shape[-1] | |
z = self._spec(mix) | |
mag = self._magnitude(z) | |
x = mag | |
B, C, Fq, T = x.shape | |
# unlike previous Demucs, we always normalize because it is easier. | |
mean = x.mean(dim=(1, 2, 3), keepdim=True) | |
std = x.std(dim=(1, 2, 3), keepdim=True) | |
x = (x - mean) / (1e-5 + std) | |
# x will be the freq. branch input. | |
if self.hybrid: | |
# Prepare the time branch input. | |
xt = mix | |
meant = xt.mean(dim=(1, 2), keepdim=True) | |
stdt = xt.std(dim=(1, 2), keepdim=True) | |
xt = (xt - meant) / (1e-5 + stdt) | |
# okay, this is a giant mess I know... | |
saved = [] # skip connections, freq. | |
saved_t = [] # skip connections, time. | |
lengths = [] # saved lengths to properly remove padding, freq branch. | |
lengths_t = [] # saved lengths for time branch. | |
for idx, encode in enumerate(self.encoder): | |
lengths.append(x.shape[-1]) | |
inject = None | |
if self.hybrid and idx < len(self.tencoder): | |
# we have not yet merged branches. | |
lengths_t.append(xt.shape[-1]) | |
tenc = self.tencoder[idx] | |
xt = tenc(xt) | |
if not tenc.empty: | |
# save for skip connection | |
saved_t.append(xt) | |
else: | |
# tenc contains just the first conv., so that now time and freq. | |
# branches have the same shape and can be merged. | |
inject = xt | |
x = encode(x, inject) | |
if idx == 0 and self.freq_emb is not None: | |
# add frequency embedding to allow for non equivariant convolutions | |
# over the frequency axis. | |
frs = torch.arange(x.shape[-2], device=x.device) | |
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x) | |
x = x + self.freq_emb_scale * emb | |
saved.append(x) | |
x = torch.zeros_like(x) | |
if self.hybrid: | |
xt = torch.zeros_like(x) | |
# initialize everything to zero (signal will go through u-net skips). | |
for idx, decode in enumerate(self.decoder): | |
skip = saved.pop(-1) | |
x, pre = decode(x, skip, lengths.pop(-1)) | |
# `pre` contains the output just before final transposed convolution, | |
# which is used when the freq. and time branch separate. | |
if self.hybrid: | |
offset = self.depth - len(self.tdecoder) | |
if self.hybrid and idx >= offset: | |
tdec = self.tdecoder[idx - offset] | |
length_t = lengths_t.pop(-1) | |
if tdec.empty: | |
assert pre.shape[2] == 1, pre.shape | |
pre = pre[:, :, 0] | |
xt, _ = tdec(pre, None, length_t) | |
else: | |
skip = saved_t.pop(-1) | |
xt, _ = tdec(xt, skip, length_t) | |
# Let's make sure we used all stored skip connections. | |
assert len(saved) == 0 | |
assert len(lengths_t) == 0 | |
assert len(saved_t) == 0 | |
S = len(self.sources) | |
x = x.view(B, S, -1, Fq, T) | |
x = x * std[:, None] + mean[:, None] | |
zout = self._mask(z, x) | |
x = self._ispec(zout, length) | |
if self.hybrid: | |
xt = xt.view(B, S, -1, length) | |
xt = xt * stdt[:, None] + meant[:, None] | |
x = xt + x | |
return x | |