Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import json | |
import os | |
import sys | |
import time | |
from dataclasses import dataclass, field | |
from fractions import Fraction | |
import torch as th | |
from torch import distributed, nn | |
from torch.nn.parallel.distributed import DistributedDataParallel | |
from .augment import FlipChannels, FlipSign, Remix, Shift | |
from .compressed import StemsSet, build_musdb_metadata, get_musdb_tracks | |
from .model import Demucs | |
from .parser import get_name, get_parser | |
from .raw import Rawset | |
from .tasnet import ConvTasNet | |
from .test import evaluate | |
from .train import train_model, validate_model | |
from .utils import human_seconds, load_model, save_model, sizeof_fmt | |
class SavedState: | |
metrics: list = field(default_factory=list) | |
last_state: dict = None | |
best_state: dict = None | |
optimizer: dict = None | |
def main(): | |
parser = get_parser() | |
args = parser.parse_args() | |
name = get_name(parser, args) | |
print(f"Experiment {name}") | |
if args.musdb is None and args.rank == 0: | |
print( | |
"You must provide the path to the MusDB dataset with the --musdb flag. " | |
"To download the MusDB dataset, see https://sigsep.github.io/datasets/musdb.html.", | |
file=sys.stderr) | |
sys.exit(1) | |
eval_folder = args.evals / name | |
eval_folder.mkdir(exist_ok=True, parents=True) | |
args.logs.mkdir(exist_ok=True) | |
metrics_path = args.logs / f"{name}.json" | |
eval_folder.mkdir(exist_ok=True, parents=True) | |
args.checkpoints.mkdir(exist_ok=True, parents=True) | |
args.models.mkdir(exist_ok=True, parents=True) | |
if args.device is None: | |
device = "cpu" | |
if th.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = args.device | |
th.manual_seed(args.seed) | |
# Prevents too many threads to be started when running `museval` as it can be quite | |
# inefficient on NUMA architectures. | |
os.environ["OMP_NUM_THREADS"] = "1" | |
if args.world_size > 1: | |
if device != "cuda" and args.rank == 0: | |
print("Error: distributed training is only available with cuda device", file=sys.stderr) | |
sys.exit(1) | |
th.cuda.set_device(args.rank % th.cuda.device_count()) | |
distributed.init_process_group(backend="nccl", | |
init_method="tcp://" + args.master, | |
rank=args.rank, | |
world_size=args.world_size) | |
checkpoint = args.checkpoints / f"{name}.th" | |
checkpoint_tmp = args.checkpoints / f"{name}.th.tmp" | |
if args.restart and checkpoint.exists(): | |
checkpoint.unlink() | |
if args.test: | |
args.epochs = 1 | |
args.repeat = 0 | |
model = load_model(args.models / args.test) | |
elif args.tasnet: | |
model = ConvTasNet(audio_channels=args.audio_channels, samplerate=args.samplerate, X=args.X) | |
else: | |
model = Demucs( | |
audio_channels=args.audio_channels, | |
channels=args.channels, | |
context=args.context, | |
depth=args.depth, | |
glu=args.glu, | |
growth=args.growth, | |
kernel_size=args.kernel_size, | |
lstm_layers=args.lstm_layers, | |
rescale=args.rescale, | |
rewrite=args.rewrite, | |
sources=4, | |
stride=args.conv_stride, | |
upsample=args.upsample, | |
samplerate=args.samplerate | |
) | |
model.to(device) | |
if args.show: | |
print(model) | |
size = sizeof_fmt(4 * sum(p.numel() for p in model.parameters())) | |
print(f"Model size {size}") | |
return | |
optimizer = th.optim.Adam(model.parameters(), lr=args.lr) | |
try: | |
saved = th.load(checkpoint, map_location='cpu') | |
except IOError: | |
saved = SavedState() | |
else: | |
model.load_state_dict(saved.last_state) | |
optimizer.load_state_dict(saved.optimizer) | |
if args.save_model: | |
if args.rank == 0: | |
model.to("cpu") | |
model.load_state_dict(saved.best_state) | |
save_model(model, args.models / f"{name}.th") | |
return | |
if args.rank == 0: | |
done = args.logs / f"{name}.done" | |
if done.exists(): | |
done.unlink() | |
if args.augment: | |
augment = nn.Sequential(FlipSign(), FlipChannels(), Shift(args.data_stride), | |
Remix(group_size=args.remix_group_size)).to(device) | |
else: | |
augment = Shift(args.data_stride) | |
if args.mse: | |
criterion = nn.MSELoss() | |
else: | |
criterion = nn.L1Loss() | |
# Setting number of samples so that all convolution windows are full. | |
# Prevents hard to debug mistake with the prediction being shifted compared | |
# to the input mixture. | |
samples = model.valid_length(args.samples) | |
print(f"Number of training samples adjusted to {samples}") | |
if args.raw: | |
train_set = Rawset(args.raw / "train", | |
samples=samples + args.data_stride, | |
channels=args.audio_channels, | |
streams=[0, 1, 2, 3, 4], | |
stride=args.data_stride) | |
valid_set = Rawset(args.raw / "valid", channels=args.audio_channels) | |
else: | |
if not args.metadata.is_file() and args.rank == 0: | |
build_musdb_metadata(args.metadata, args.musdb, args.workers) | |
if args.world_size > 1: | |
distributed.barrier() | |
metadata = json.load(open(args.metadata)) | |
duration = Fraction(samples + args.data_stride, args.samplerate) | |
stride = Fraction(args.data_stride, args.samplerate) | |
train_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="train"), | |
metadata, | |
duration=duration, | |
stride=stride, | |
samplerate=args.samplerate, | |
channels=args.audio_channels) | |
valid_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="valid"), | |
metadata, | |
samplerate=args.samplerate, | |
channels=args.audio_channels) | |
best_loss = float("inf") | |
for epoch, metrics in enumerate(saved.metrics): | |
print(f"Epoch {epoch:03d}: " | |
f"train={metrics['train']:.8f} " | |
f"valid={metrics['valid']:.8f} " | |
f"best={metrics['best']:.4f} " | |
f"duration={human_seconds(metrics['duration'])}") | |
best_loss = metrics['best'] | |
if args.world_size > 1: | |
dmodel = DistributedDataParallel(model, | |
device_ids=[th.cuda.current_device()], | |
output_device=th.cuda.current_device()) | |
else: | |
dmodel = model | |
for epoch in range(len(saved.metrics), args.epochs): | |
begin = time.time() | |
model.train() | |
train_loss = train_model(epoch, | |
train_set, | |
dmodel, | |
criterion, | |
optimizer, | |
augment, | |
batch_size=args.batch_size, | |
device=device, | |
repeat=args.repeat, | |
seed=args.seed, | |
workers=args.workers, | |
world_size=args.world_size) | |
model.eval() | |
valid_loss = validate_model(epoch, | |
valid_set, | |
model, | |
criterion, | |
device=device, | |
rank=args.rank, | |
split=args.split_valid, | |
world_size=args.world_size) | |
duration = time.time() - begin | |
if valid_loss < best_loss: | |
best_loss = valid_loss | |
saved.best_state = { | |
key: value.to("cpu").clone() | |
for key, value in model.state_dict().items() | |
} | |
saved.metrics.append({ | |
"train": train_loss, | |
"valid": valid_loss, | |
"best": best_loss, | |
"duration": duration | |
}) | |
if args.rank == 0: | |
json.dump(saved.metrics, open(metrics_path, "w")) | |
saved.last_state = model.state_dict() | |
saved.optimizer = optimizer.state_dict() | |
if args.rank == 0 and not args.test: | |
th.save(saved, checkpoint_tmp) | |
checkpoint_tmp.rename(checkpoint) | |
print(f"Epoch {epoch:03d}: " | |
f"train={train_loss:.8f} valid={valid_loss:.8f} best={best_loss:.4f} " | |
f"duration={human_seconds(duration)}") | |
del dmodel | |
model.load_state_dict(saved.best_state) | |
if args.eval_cpu: | |
device = "cpu" | |
model.to(device) | |
model.eval() | |
evaluate(model, | |
args.musdb, | |
eval_folder, | |
rank=args.rank, | |
world_size=args.world_size, | |
device=device, | |
save=args.save, | |
split=args.split_valid, | |
shifts=args.shifts, | |
workers=args.eval_workers) | |
model.to("cpu") | |
save_model(model, args.models / f"{name}.th") | |
if args.rank == 0: | |
print("done") | |
done.write_text("done") | |
if __name__ == "__main__": | |
main() | |