Junlinh commited on
Commit
8b48602
·
1 Parent(s): 1f1350f

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -38
app.py DELETED
@@ -1,38 +0,0 @@
1
- import gradio as gr
2
- import torchvision.transforms as transforms
3
- from PIL import Image
4
- import torch
5
- from timm.models import create_model
6
- def predict(input_img):
7
- input_img = Image.fromarray(np.uint8(input_img))
8
- model1 = create_model(
9
- 'resnet50',
10
- drop_rate=0.5,
11
- num_classes=1,)
12
- model2 = create_model(
13
- 'resnet50',
14
- drop_rate=0.5,
15
- num_classes=1,)
16
-
17
- loc = 'cuda:{}'.format(0)
18
- checkpoint1 = torch.load("./machine_full_best.tar", map_location=loc)
19
- model1.load_state_dict(checkpoint1['state_dict'])
20
- checkpoint2 = torch.load("./human_full_best.tar", map_location=loc)
21
- model2.load_state_dict(checkpoint2['state_dict'])
22
-
23
- my_transform = transforms.Compose([
24
- transforms.RandomResizedCrop(224, (1, 1)),
25
- transforms.ToTensor(),
26
- transforms.Normalize(mean=[0.485, 0.456, 0.406],
27
- std=[0.229, 0.224, 0.225]),])
28
-
29
- input_img = my_transform(input_img).view(1,3,224,224)
30
- model1.eval()
31
- model2.eval()
32
- result1 = round(model1(input_img).item(), 3)
33
- result2 = round(model2(input_img).item(), 3)
34
- result = 'MachineMem score = ' + str(result1) + ', HumanMem score = ' + str(result2) +'.'
35
- return result
36
-
37
- demo = gr.Interface(predict, gr.Image(), "text")
38
- demo.launch(debug = True)