Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import os | |
| import tempfile | |
| import unittest | |
| from itertools import product | |
| import numpy as np | |
| import torch | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| LCMScheduler, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.utils.import_utils import is_peft_available | |
| from diffusers.utils.testing_utils import ( | |
| floats_tensor, | |
| require_peft_backend, | |
| require_peft_version_greater, | |
| skip_mps, | |
| torch_device, | |
| ) | |
| if is_peft_available(): | |
| from peft import LoraConfig | |
| from peft.tuners.tuners_utils import BaseTunerLayer | |
| from peft.utils import get_peft_model_state_dict | |
| def state_dicts_almost_equal(sd1, sd2): | |
| sd1 = dict(sorted(sd1.items())) | |
| sd2 = dict(sorted(sd2.items())) | |
| models_are_equal = True | |
| for ten1, ten2 in zip(sd1.values(), sd2.values()): | |
| if (ten1 - ten2).abs().max() > 1e-3: | |
| models_are_equal = False | |
| return models_are_equal | |
| def check_if_lora_correctly_set(model) -> bool: | |
| """ | |
| Checks if the LoRA layers are correctly set with peft | |
| """ | |
| for module in model.modules(): | |
| if isinstance(module, BaseTunerLayer): | |
| return True | |
| return False | |
| class PeftLoraLoaderMixinTests: | |
| pipeline_class = None | |
| scheduler_cls = None | |
| scheduler_kwargs = None | |
| scheduler_classes = [DDIMScheduler, LCMScheduler] | |
| has_two_text_encoders = False | |
| has_three_text_encoders = False | |
| text_encoder_cls, text_encoder_id = None, None | |
| text_encoder_2_cls, text_encoder_2_id = None, None | |
| text_encoder_3_cls, text_encoder_3_id = None, None | |
| tokenizer_cls, tokenizer_id = None, None | |
| tokenizer_2_cls, tokenizer_2_id = None, None | |
| tokenizer_3_cls, tokenizer_3_id = None, None | |
| unet_kwargs = None | |
| transformer_cls = None | |
| transformer_kwargs = None | |
| vae_cls = AutoencoderKL | |
| vae_kwargs = None | |
| text_encoder_target_modules = ["q_proj", "k_proj", "v_proj", "out_proj"] | |
| def get_dummy_components(self, scheduler_cls=None, use_dora=False): | |
| if self.unet_kwargs and self.transformer_kwargs: | |
| raise ValueError("Both `unet_kwargs` and `transformer_kwargs` cannot be specified.") | |
| if self.has_two_text_encoders and self.has_three_text_encoders: | |
| raise ValueError("Both `has_two_text_encoders` and `has_three_text_encoders` cannot be True.") | |
| scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls | |
| rank = 4 | |
| torch.manual_seed(0) | |
| if self.unet_kwargs is not None: | |
| unet = UNet2DConditionModel(**self.unet_kwargs) | |
| else: | |
| transformer = self.transformer_cls(**self.transformer_kwargs) | |
| scheduler = scheduler_cls(**self.scheduler_kwargs) | |
| torch.manual_seed(0) | |
| vae = self.vae_cls(**self.vae_kwargs) | |
| text_encoder = self.text_encoder_cls.from_pretrained(self.text_encoder_id) | |
| tokenizer = self.tokenizer_cls.from_pretrained(self.tokenizer_id) | |
| if self.text_encoder_2_cls is not None: | |
| text_encoder_2 = self.text_encoder_2_cls.from_pretrained(self.text_encoder_2_id) | |
| tokenizer_2 = self.tokenizer_2_cls.from_pretrained(self.tokenizer_2_id) | |
| if self.text_encoder_3_cls is not None: | |
| text_encoder_3 = self.text_encoder_3_cls.from_pretrained(self.text_encoder_3_id) | |
| tokenizer_3 = self.tokenizer_3_cls.from_pretrained(self.tokenizer_3_id) | |
| text_lora_config = LoraConfig( | |
| r=rank, | |
| lora_alpha=rank, | |
| target_modules=self.text_encoder_target_modules, | |
| init_lora_weights=False, | |
| use_dora=use_dora, | |
| ) | |
| denoiser_lora_config = LoraConfig( | |
| r=rank, | |
| lora_alpha=rank, | |
| target_modules=["to_q", "to_k", "to_v", "to_out.0"], | |
| init_lora_weights=False, | |
| use_dora=use_dora, | |
| ) | |
| pipeline_components = { | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| } | |
| # Denoiser | |
| if self.unet_kwargs is not None: | |
| pipeline_components.update({"unet": unet}) | |
| elif self.transformer_kwargs is not None: | |
| pipeline_components.update({"transformer": transformer}) | |
| # Remaining text encoders. | |
| if self.text_encoder_2_cls is not None: | |
| pipeline_components.update({"tokenizer_2": tokenizer_2, "text_encoder_2": text_encoder_2}) | |
| if self.text_encoder_3_cls is not None: | |
| pipeline_components.update({"tokenizer_3": tokenizer_3, "text_encoder_3": text_encoder_3}) | |
| # Remaining stuff | |
| init_params = inspect.signature(self.pipeline_class.__init__).parameters | |
| if "safety_checker" in init_params: | |
| pipeline_components.update({"safety_checker": None}) | |
| if "feature_extractor" in init_params: | |
| pipeline_components.update({"feature_extractor": None}) | |
| if "image_encoder" in init_params: | |
| pipeline_components.update({"image_encoder": None}) | |
| return pipeline_components, text_lora_config, denoiser_lora_config | |
| def output_shape(self): | |
| raise NotImplementedError | |
| def get_dummy_inputs(self, with_generator=True): | |
| batch_size = 1 | |
| sequence_length = 10 | |
| num_channels = 4 | |
| sizes = (32, 32) | |
| generator = torch.manual_seed(0) | |
| noise = floats_tensor((batch_size, num_channels) + sizes) | |
| input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) | |
| pipeline_inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "num_inference_steps": 5, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| } | |
| if with_generator: | |
| pipeline_inputs.update({"generator": generator}) | |
| return noise, input_ids, pipeline_inputs | |
| # Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb | |
| def get_dummy_tokens(self): | |
| max_seq_length = 77 | |
| inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0)) | |
| prepared_inputs = {} | |
| prepared_inputs["input_ids"] = inputs | |
| return prepared_inputs | |
| def test_simple_inference(self): | |
| """ | |
| Tests a simple inference and makes sure it works as expected | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs() | |
| output_no_lora = pipe(**inputs)[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| def test_simple_inference_with_text_lora(self): | |
| """ | |
| Tests a simple inference with lora attached on the text encoder | |
| and makes sure it works as expected | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| lora_loadable_components = self.pipeline_class._lora_loadable_modules | |
| if "text_encoder_2" in lora_loadable_components: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" | |
| ) | |
| def test_simple_inference_with_text_lora_and_scale(self): | |
| """ | |
| Tests a simple inference with lora attached on the text encoder + scale argument | |
| and makes sure it works as expected | |
| """ | |
| call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys() | |
| # TODO(diffusers): Discuss a common naming convention across library for 1.0.0 release | |
| for possible_attention_kwargs in ["cross_attention_kwargs", "joint_attention_kwargs", "attention_kwargs"]: | |
| if possible_attention_kwargs in call_signature_keys: | |
| attention_kwargs_name = possible_attention_kwargs | |
| break | |
| assert attention_kwargs_name is not None | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| lora_loadable_components = self.pipeline_class._lora_loadable_modules | |
| if "text_encoder_2" in lora_loadable_components: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" | |
| ) | |
| attention_kwargs = {attention_kwargs_name: {"scale": 0.5}} | |
| output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0] | |
| self.assertTrue( | |
| not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), | |
| "Lora + scale should change the output", | |
| ) | |
| attention_kwargs = {attention_kwargs_name: {"scale": 0.0}} | |
| output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0] | |
| self.assertTrue( | |
| np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), | |
| "Lora + 0 scale should lead to same result as no LoRA", | |
| ) | |
| def test_simple_inference_with_text_lora_fused(self): | |
| """ | |
| Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model | |
| and makes sure it works as expected | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| pipe.fuse_lora() | |
| # Fusing should still keep the LoRA layers | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| ouput_fused = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertFalse( | |
| np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" | |
| ) | |
| def test_simple_inference_with_text_lora_unloaded(self): | |
| """ | |
| Tests a simple inference with lora attached to text encoder, then unloads the lora weights | |
| and makes sure it works as expected | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| lora_loadable_components = self.pipeline_class._lora_loadable_modules | |
| if "text_encoder_2" in lora_loadable_components: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| pipe.unload_lora_weights() | |
| # unloading should remove the LoRA layers | |
| self.assertFalse( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" | |
| ) | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| self.assertFalse( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), | |
| "Lora not correctly unloaded in text encoder 2", | |
| ) | |
| ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), | |
| "Fused lora should change the output", | |
| ) | |
| def test_simple_inference_with_text_lora_save_load(self): | |
| """ | |
| Tests a simple usecase where users could use saving utilities for LoRA. | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) | |
| self.pipeline_class.save_lora_weights( | |
| save_directory=tmpdirname, | |
| text_encoder_lora_layers=text_encoder_state_dict, | |
| text_encoder_2_lora_layers=text_encoder_2_state_dict, | |
| safe_serialization=False, | |
| ) | |
| else: | |
| self.pipeline_class.save_lora_weights( | |
| save_directory=tmpdirname, | |
| text_encoder_lora_layers=text_encoder_state_dict, | |
| safe_serialization=False, | |
| ) | |
| if self.has_two_text_encoders: | |
| if "text_encoder_2" not in self.pipeline_class._lora_loadable_modules: | |
| self.pipeline_class.save_lora_weights( | |
| save_directory=tmpdirname, | |
| text_encoder_lora_layers=text_encoder_state_dict, | |
| safe_serialization=False, | |
| ) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
| pipe.unload_lora_weights() | |
| pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) | |
| images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| self.assertTrue( | |
| np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), | |
| "Loading from saved checkpoints should give same results.", | |
| ) | |
| def test_simple_inference_with_partial_text_lora(self): | |
| """ | |
| Tests a simple inference with lora attached on the text encoder | |
| with different ranks and some adapters removed | |
| and makes sure it works as expected | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, _, _ = self.get_dummy_components(scheduler_cls) | |
| # Verify `StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder` handles different ranks per module (PR#8324). | |
| text_lora_config = LoraConfig( | |
| r=4, | |
| rank_pattern={"q_proj": 1, "k_proj": 2, "v_proj": 3}, | |
| lora_alpha=4, | |
| target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], | |
| init_lora_weights=False, | |
| use_dora=False, | |
| ) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| # Gather the state dict for the PEFT model, excluding `layers.4`, to ensure `load_lora_into_text_encoder` | |
| # supports missing layers (PR#8324). | |
| state_dict = { | |
| f"text_encoder.{module_name}": param | |
| for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items() | |
| if "text_model.encoder.layers.4" not in module_name | |
| } | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| state_dict.update( | |
| { | |
| f"text_encoder_2.{module_name}": param | |
| for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items() | |
| if "text_model.encoder.layers.4" not in module_name | |
| } | |
| ) | |
| output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" | |
| ) | |
| # Unload lora and load it back using the pipe.load_lora_weights machinery | |
| pipe.unload_lora_weights() | |
| pipe.load_lora_weights(state_dict) | |
| output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3), | |
| "Removing adapters should change the output", | |
| ) | |
| def test_simple_inference_save_pretrained(self): | |
| """ | |
| Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| pipe.save_pretrained(tmpdirname) | |
| pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname) | |
| pipe_from_pretrained.to(torch_device) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe_from_pretrained.text_encoder), | |
| "Lora not correctly set in text encoder", | |
| ) | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2), | |
| "Lora not correctly set in text encoder 2", | |
| ) | |
| images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3), | |
| "Loading from saved checkpoints should give same results.", | |
| ) | |
| def test_simple_inference_with_text_denoiser_lora_save_load(self): | |
| """ | |
| Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| text_encoder_state_dict = ( | |
| get_peft_model_state_dict(pipe.text_encoder) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules | |
| else None | |
| ) | |
| denoiser_state_dict = get_peft_model_state_dict(denoiser) | |
| saving_kwargs = { | |
| "save_directory": tmpdirname, | |
| "safe_serialization": False, | |
| } | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| saving_kwargs.update({"text_encoder_lora_layers": text_encoder_state_dict}) | |
| if self.unet_kwargs is not None: | |
| saving_kwargs.update({"unet_lora_layers": denoiser_state_dict}) | |
| else: | |
| saving_kwargs.update({"transformer_lora_layers": denoiser_state_dict}) | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) | |
| saving_kwargs.update({"text_encoder_2_lora_layers": text_encoder_2_state_dict}) | |
| self.pipeline_class.save_lora_weights(**saving_kwargs) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) | |
| pipe.unload_lora_weights() | |
| pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) | |
| images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| self.assertTrue( | |
| np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), | |
| "Loading from saved checkpoints should give same results.", | |
| ) | |
| def test_simple_inference_with_text_denoiser_lora_and_scale(self): | |
| """ | |
| Tests a simple inference with lora attached on the text encoder + Unet + scale argument | |
| and makes sure it works as expected | |
| """ | |
| call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys() | |
| for possible_attention_kwargs in ["cross_attention_kwargs", "joint_attention_kwargs", "attention_kwargs"]: | |
| if possible_attention_kwargs in call_signature_keys: | |
| attention_kwargs_name = possible_attention_kwargs | |
| break | |
| assert attention_kwargs_name is not None | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" | |
| ) | |
| attention_kwargs = {attention_kwargs_name: {"scale": 0.5}} | |
| output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0] | |
| self.assertTrue( | |
| not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), | |
| "Lora + scale should change the output", | |
| ) | |
| attention_kwargs = {attention_kwargs_name: {"scale": 0.0}} | |
| output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0] | |
| self.assertTrue( | |
| np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), | |
| "Lora + 0 scale should lead to same result as no LoRA", | |
| ) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue( | |
| pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0, | |
| "The scaling parameter has not been correctly restored!", | |
| ) | |
| def test_simple_inference_with_text_lora_denoiser_fused(self): | |
| """ | |
| Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model | |
| and makes sure it works as expected - with unet | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules) | |
| # Fusing should still keep the LoRA layers | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| output_fused = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertFalse( | |
| np.allclose(output_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" | |
| ) | |
| def test_simple_inference_with_text_denoiser_lora_unloaded(self): | |
| """ | |
| Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights | |
| and makes sure it works as expected | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| pipe.unload_lora_weights() | |
| # unloading should remove the LoRA layers | |
| self.assertFalse( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" | |
| ) | |
| self.assertFalse(check_if_lora_correctly_set(denoiser), "Lora not correctly unloaded in denoiser") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| self.assertFalse( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), | |
| "Lora not correctly unloaded in text encoder 2", | |
| ) | |
| output_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(output_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), | |
| "Fused lora should change the output", | |
| ) | |
| def test_simple_inference_with_text_denoiser_lora_unfused( | |
| self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3 | |
| ): | |
| """ | |
| Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights | |
| and makes sure it works as expected | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules) | |
| output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules) | |
| output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| # unloading should remove the LoRA layers | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers") | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Unfuse should still keep LoRA layers") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers" | |
| ) | |
| # Fuse and unfuse should lead to the same results | |
| self.assertTrue( | |
| np.allclose(output_fused_lora, output_unfused_lora, atol=expected_atol, rtol=expected_rtol), | |
| "Fused lora should not change the output", | |
| ) | |
| def test_simple_inference_with_text_denoiser_multi_adapter(self): | |
| """ | |
| Tests a simple inference with lora attached to text encoder and unet, attaches | |
| multiple adapters and set them | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-2") | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| pipe.set_adapters("adapter-1") | |
| output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertFalse( | |
| np.allclose(output_no_lora, output_adapter_1, atol=1e-3, rtol=1e-3), | |
| "Adapter outputs should be different.", | |
| ) | |
| pipe.set_adapters("adapter-2") | |
| output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertFalse( | |
| np.allclose(output_no_lora, output_adapter_2, atol=1e-3, rtol=1e-3), | |
| "Adapter outputs should be different.", | |
| ) | |
| pipe.set_adapters(["adapter-1", "adapter-2"]) | |
| output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertFalse( | |
| np.allclose(output_no_lora, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Adapter outputs should be different.", | |
| ) | |
| # Fuse and unfuse should lead to the same results | |
| self.assertFalse( | |
| np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
| "Adapter 1 and 2 should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Adapter 1 and mixed adapters should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Adapter 2 and mixed adapters should give different results", | |
| ) | |
| pipe.disable_lora() | |
| output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), | |
| "output with no lora and output with lora disabled should give same results", | |
| ) | |
| def test_wrong_adapter_name_raises_error(self): | |
| scheduler_cls = self.scheduler_classes[0] | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| with self.assertRaises(ValueError) as err_context: | |
| pipe.set_adapters("test") | |
| self.assertTrue("not in the list of present adapters" in str(err_context.exception)) | |
| # test this works. | |
| pipe.set_adapters("adapter-1") | |
| _ = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| def test_simple_inference_with_text_denoiser_block_scale(self): | |
| """ | |
| Tests a simple inference with lora attached to text encoder and unet, attaches | |
| one adapter and set different weights for different blocks (i.e. block lora) | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| weights_1 = {"text_encoder": 2, "unet": {"down": 5}} | |
| pipe.set_adapters("adapter-1", weights_1) | |
| output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| weights_2 = {"unet": {"up": 5}} | |
| pipe.set_adapters("adapter-1", weights_2) | |
| output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertFalse( | |
| np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3), | |
| "LoRA weights 1 and 2 should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3), | |
| "No adapter and LoRA weights 1 should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3), | |
| "No adapter and LoRA weights 2 should give different results", | |
| ) | |
| pipe.disable_lora() | |
| output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), | |
| "output with no lora and output with lora disabled should give same results", | |
| ) | |
| def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self): | |
| """ | |
| Tests a simple inference with lora attached to text encoder and unet, attaches | |
| multiple adapters and set differnt weights for different blocks (i.e. block lora) | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-2") | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| if "text_encoder_2" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| scales_1 = {"text_encoder": 2, "unet": {"down": 5}} | |
| scales_2 = {"unet": {"down": 5, "mid": 5}} | |
| pipe.set_adapters("adapter-1", scales_1) | |
| output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.set_adapters("adapter-2", scales_2) | |
| output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2]) | |
| output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| # Fuse and unfuse should lead to the same results | |
| self.assertFalse( | |
| np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
| "Adapter 1 and 2 should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Adapter 1 and mixed adapters should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Adapter 2 and mixed adapters should give different results", | |
| ) | |
| pipe.disable_lora() | |
| output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), | |
| "output with no lora and output with lora disabled should give same results", | |
| ) | |
| # a mismatching number of adapter_names and adapter_weights should raise an error | |
| with self.assertRaises(ValueError): | |
| pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1]) | |
| def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): | |
| """Tests that any valid combination of lora block scales can be used in pipe.set_adapter""" | |
| def updown_options(blocks_with_tf, layers_per_block, value): | |
| """ | |
| Generate every possible combination for how a lora weight dict for the up/down part can be. | |
| E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ... | |
| """ | |
| num_val = value | |
| list_val = [value] * layers_per_block | |
| node_opts = [None, num_val, list_val] | |
| node_opts_foreach_block = [node_opts] * len(blocks_with_tf) | |
| updown_opts = [num_val] | |
| for nodes in product(*node_opts_foreach_block): | |
| if all(n is None for n in nodes): | |
| continue | |
| opt = {} | |
| for b, n in zip(blocks_with_tf, nodes): | |
| if n is not None: | |
| opt["block_" + str(b)] = n | |
| updown_opts.append(opt) | |
| return updown_opts | |
| def all_possible_dict_opts(unet, value): | |
| """ | |
| Generate every possible combination for how a lora weight dict can be. | |
| E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ... | |
| """ | |
| down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")] | |
| up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")] | |
| layers_per_block = unet.config.layers_per_block | |
| text_encoder_opts = [None, value] | |
| text_encoder_2_opts = [None, value] | |
| mid_opts = [None, value] | |
| down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value) | |
| up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value) | |
| opts = [] | |
| for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts): | |
| if all(o is None for o in (t1, t2, d, m, u)): | |
| continue | |
| opt = {} | |
| if t1 is not None: | |
| opt["text_encoder"] = t1 | |
| if t2 is not None: | |
| opt["text_encoder_2"] = t2 | |
| if all(o is None for o in (d, m, u)): | |
| # no unet scaling | |
| continue | |
| opt["unet"] = {} | |
| if d is not None: | |
| opt["unet"]["down"] = d | |
| if m is not None: | |
| opt["unet"]["mid"] = m | |
| if u is not None: | |
| opt["unet"]["up"] = u | |
| opts.append(opt) | |
| return opts | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| lora_loadable_components = self.pipeline_class._lora_loadable_modules | |
| if "text_encoder_2" in lora_loadable_components: | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
| for scale_dict in all_possible_dict_opts(pipe.unet, value=1234): | |
| # test if lora block scales can be set with this scale_dict | |
| if not self.has_two_text_encoders and "text_encoder_2" in scale_dict: | |
| del scale_dict["text_encoder_2"] | |
| pipe.set_adapters("adapter-1", scale_dict) # test will fail if this line throws an error | |
| def test_simple_inference_with_text_denoiser_multi_adapter_delete_adapter(self): | |
| """ | |
| Tests a simple inference with lora attached to text encoder and unet, attaches | |
| multiple adapters and set/delete them | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-2") | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| lora_loadable_components = self.pipeline_class._lora_loadable_modules | |
| if "text_encoder_2" in lora_loadable_components: | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| pipe.set_adapters("adapter-1") | |
| output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.set_adapters("adapter-2") | |
| output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.set_adapters(["adapter-1", "adapter-2"]) | |
| output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertFalse( | |
| np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
| "Adapter 1 and 2 should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Adapter 1 and mixed adapters should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Adapter 2 and mixed adapters should give different results", | |
| ) | |
| pipe.delete_adapters("adapter-1") | |
| output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
| "Adapter 1 and 2 should give different results", | |
| ) | |
| pipe.delete_adapters("adapter-2") | |
| output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), | |
| "output with no lora and output with lora disabled should give same results", | |
| ) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-2") | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| pipe.set_adapters(["adapter-1", "adapter-2"]) | |
| pipe.delete_adapters(["adapter-1", "adapter-2"]) | |
| output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), | |
| "output with no lora and output with lora disabled should give same results", | |
| ) | |
| def test_simple_inference_with_text_denoiser_multi_adapter_weighted(self): | |
| """ | |
| Tests a simple inference with lora attached to text encoder and unet, attaches | |
| multiple adapters and set them | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-2") | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| lora_loadable_components = self.pipeline_class._lora_loadable_modules | |
| if "text_encoder_2" in lora_loadable_components: | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| pipe.set_adapters("adapter-1") | |
| output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.set_adapters("adapter-2") | |
| output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.set_adapters(["adapter-1", "adapter-2"]) | |
| output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| # Fuse and unfuse should lead to the same results | |
| self.assertFalse( | |
| np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), | |
| "Adapter 1 and 2 should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Adapter 1 and mixed adapters should give different results", | |
| ) | |
| self.assertFalse( | |
| np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Adapter 2 and mixed adapters should give different results", | |
| ) | |
| pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6]) | |
| output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertFalse( | |
| np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3), | |
| "Weighted adapter and mixed adapter should give different results", | |
| ) | |
| pipe.disable_lora() | |
| output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), | |
| "output with no lora and output with lora disabled should give same results", | |
| ) | |
| def test_lora_fuse_nan(self): | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| # corrupt one LoRA weight with `inf` values | |
| with torch.no_grad(): | |
| if self.unet_kwargs: | |
| pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A[ | |
| "adapter-1" | |
| ].weight += float("inf") | |
| else: | |
| pipe.transformer.transformer_blocks[0].attn.to_q.lora_A["adapter-1"].weight += float("inf") | |
| # with `safe_fusing=True` we should see an Error | |
| with self.assertRaises(ValueError): | |
| pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True) | |
| # without we should not see an error, but every image will be black | |
| pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False) | |
| out = pipe("test", num_inference_steps=2, output_type="np")[0] | |
| self.assertTrue(np.isnan(out).all()) | |
| def test_get_adapters(self): | |
| """ | |
| Tests a simple usecase where we attach multiple adapters and check if the results | |
| are the expected results | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| adapter_names = pipe.get_active_adapters() | |
| self.assertListEqual(adapter_names, ["adapter-1"]) | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-2") | |
| adapter_names = pipe.get_active_adapters() | |
| self.assertListEqual(adapter_names, ["adapter-2"]) | |
| pipe.set_adapters(["adapter-1", "adapter-2"]) | |
| self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"]) | |
| def test_get_list_adapters(self): | |
| """ | |
| Tests a simple usecase where we attach multiple adapters and check if the results | |
| are the expected results | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| # 1. | |
| dicts_to_be_checked = {} | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| dicts_to_be_checked = {"text_encoder": ["adapter-1"]} | |
| if self.unet_kwargs is not None: | |
| pipe.unet.add_adapter(denoiser_lora_config, "adapter-1") | |
| dicts_to_be_checked.update({"unet": ["adapter-1"]}) | |
| else: | |
| pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1") | |
| dicts_to_be_checked.update({"transformer": ["adapter-1"]}) | |
| self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked) | |
| # 2. | |
| dicts_to_be_checked = {} | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
| dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]} | |
| if self.unet_kwargs is not None: | |
| pipe.unet.add_adapter(denoiser_lora_config, "adapter-2") | |
| dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]}) | |
| else: | |
| pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2") | |
| dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]}) | |
| self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked) | |
| # 3. | |
| pipe.set_adapters(["adapter-1", "adapter-2"]) | |
| dicts_to_be_checked = {} | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]} | |
| if self.unet_kwargs is not None: | |
| dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]}) | |
| else: | |
| dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]}) | |
| self.assertDictEqual( | |
| pipe.get_list_adapters(), | |
| dicts_to_be_checked, | |
| ) | |
| # 4. | |
| dicts_to_be_checked = {} | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]} | |
| if self.unet_kwargs is not None: | |
| pipe.unet.add_adapter(denoiser_lora_config, "adapter-3") | |
| dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2", "adapter-3"]}) | |
| else: | |
| pipe.transformer.add_adapter(denoiser_lora_config, "adapter-3") | |
| dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2", "adapter-3"]}) | |
| self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked) | |
| def test_simple_inference_with_text_lora_denoiser_fused_multi( | |
| self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3 | |
| ): | |
| """ | |
| Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model | |
| and makes sure it works as expected - with unet and multi-adapter case | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_lora.shape == self.output_shape) | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" | |
| ) | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-1") | |
| # Attach a second adapter | |
| if "text_encoder" in self.pipeline_class._lora_loadable_modules: | |
| pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") | |
| denoiser.add_adapter(denoiser_lora_config, "adapter-2") | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| lora_loadable_components = self.pipeline_class._lora_loadable_modules | |
| if "text_encoder_2" in lora_loadable_components: | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") | |
| pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| # set them to multi-adapter inference mode | |
| pipe.set_adapters(["adapter-1", "adapter-2"]) | |
| outputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.set_adapters(["adapter-1"]) | |
| outputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-1"]) | |
| # Fusing should still keep the LoRA layers so outpout should remain the same | |
| outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(outputs_lora_1, outputs_lora_1_fused, atol=expected_atol, rtol=expected_rtol), | |
| "Fused lora should not change the output", | |
| ) | |
| pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules) | |
| pipe.fuse_lora( | |
| components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-2", "adapter-1"] | |
| ) | |
| # Fusing should still keep the LoRA layers | |
| output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue( | |
| np.allclose(output_all_lora_fused, outputs_all_lora, atol=expected_atol, rtol=expected_rtol), | |
| "Fused lora should not change the output", | |
| ) | |
| def test_simple_inference_with_dora(self): | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components( | |
| scheduler_cls, use_dora=True | |
| ) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertTrue(output_no_dora_lora.shape == self.output_shape) | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| lora_loadable_components = self.pipeline_class._lora_loadable_modules | |
| if "text_encoder_2" in lora_loadable_components: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| self.assertFalse( | |
| np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3), | |
| "DoRA lora should change the output", | |
| ) | |
| def test_simple_inference_with_text_denoiser_lora_unfused_torch_compile(self): | |
| """ | |
| Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights | |
| and makes sure it works as expected | |
| """ | |
| for scheduler_cls in self.scheduler_classes: | |
| components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _, _, inputs = self.get_dummy_inputs(with_generator=False) | |
| pipe.text_encoder.add_adapter(text_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") | |
| denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet | |
| denoiser.add_adapter(denoiser_lora_config) | |
| self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.") | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| pipe.text_encoder_2.add_adapter(text_lora_config) | |
| self.assertTrue( | |
| check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" | |
| ) | |
| pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True) | |
| if self.has_two_text_encoders or self.has_three_text_encoders: | |
| pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True) | |
| # Just makes sure it works.. | |
| _ = pipe(**inputs, generator=torch.manual_seed(0))[0] | |
| def test_modify_padding_mode(self): | |
| def set_pad_mode(network, mode="circular"): | |
| for _, module in network.named_modules(): | |
| if isinstance(module, torch.nn.Conv2d): | |
| module.padding_mode = mode | |
| for scheduler_cls in self.scheduler_classes: | |
| components, _, _ = self.get_dummy_components(scheduler_cls) | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| _pad_mode = "circular" | |
| set_pad_mode(pipe.vae, _pad_mode) | |
| set_pad_mode(pipe.unet, _pad_mode) | |
| _, _, inputs = self.get_dummy_inputs() | |
| _ = pipe(**inputs)[0] | |