LITnet / style.py
JungminChung's picture
first commit
3617b5f
import numpy as np
import torch
import os
import argparse
import time
import collections
from torch.autograd import Variable
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
import utils
from network import ImageTransformNet, ImageTransformNet_dpws
from vgg import Vgg16
# Global Variables
IMAGE_SIZE = 256
BATCH_SIZE = 4
LEARNING_RATE = 1e-3
EPOCHS = 2
# STYLE_WEIGHT = 9.2e3
# STYLE_WEIGHT = 8e4
STYLE_WEIGHT = 7e4
# STYLE_WEIGHT = 0
# CONTENT_WEIGHT = 1e-2
# CONTENT_WEIGHT = 0.15
CONTENT_WEIGHT = 0.1
L1_WEIGHT = 1
def train(args):
# GPU enabling
if (args.gpu != None):
use_cuda = True
dtype = torch.cuda.FloatTensor
torch.cuda.set_device(args.gpu)
print("Current device: %d" %torch.cuda.current_device())
# visualization of training controlled by flag
visualize = (args.visualize != None)
if (visualize):
img_transform_512 = transforms.Compose([
transforms.Scale(512), # scale shortest side to image_size
# transforms.CenterCrop(512), # crop center image_size out
transforms.ToTensor(), # turn image from [0-255] to [0-1]
utils.normalize_tensor_transform() # normalize with ImageNet values
])
testImage_maine = utils.load_image(args.test_image)
testImage_maine = img_transform_512(testImage_maine)
testImage_maine = Variable(testImage_maine.repeat(1, 1, 1, 1), requires_grad=False).type(dtype)
test_name = os.path.split(args.test_image)[-1].split('.')[0]
# define network
image_transformer_dpws = ImageTransformNet_dpws().type(dtype)
# paras = [image_transformer_dpws.parameters()]
optimizer = Adam(image_transformer_dpws.parameters(), LEARNING_RATE)
loss_mse = torch.nn.MSELoss()
loss_l1 = torch.nn.L1Loss()
vgg = Vgg16().type(dtype)
image_transformer = ImageTransformNet().type(dtype)
image_transformer.load_state_dict(torch.load(args.load_path))
# get training dataset
dataset_transform = transforms.Compose([
transforms.Scale(IMAGE_SIZE), # scale shortest side to image_size
transforms.CenterCrop(IMAGE_SIZE), # crop center image_size out
transforms.ToTensor(), # turn image from [0-255] to [0-1]
utils.normalize_tensor_transform() # normalize with ImageNet values
])
train_dataset = datasets.ImageFolder(args.dataset, dataset_transform)
train_loader = DataLoader(train_dataset, batch_size = BATCH_SIZE)
# style image
style_transform = transforms.Compose([
transforms.ToTensor(), # turn image from [0-255] to [0-1]
utils.normalize_tensor_transform() # normalize with ImageNet values
])
style = utils.load_image(args.style_image)
style = style_transform(style)
style = Variable(style.repeat(BATCH_SIZE, 1, 1, 1)).type(dtype)
style_name = os.path.split(args.style_image)[-1].split('.')[0]
# calculate gram matrices for style feature layer maps we care about
style_features = vgg(style)
style_gram = [utils.gram(fmap) for fmap in style_features]
for e in range(EPOCHS):
# track values for...
img_count = 0
aggregate_style_loss = 0.0
aggregate_content_loss = 0.0
aggregate_l1_loss = 0.0
# aggregate_tv_loss = 0.0
# train network
image_transformer_dpws.train()
for batch_num, (x, label) in enumerate(train_loader):
img_batch_read = len(x)
img_count += img_batch_read
# zero out gradients
optimizer.zero_grad()
# input batch to transformer network
x = Variable(x).type(dtype)
y_hat = image_transformer_dpws(x)
y_label = image_transformer(x)
# get vgg features
y_c_features = vgg(x)
y_hat_features = vgg(y_hat)
# calculate style loss
y_hat_gram = [utils.gram(fmap) for fmap in y_hat_features]
style_loss = 0.0
for j in range(4):
style_loss += loss_mse(y_hat_gram[j], style_gram[j][:img_batch_read])
style_loss = STYLE_WEIGHT*style_loss
aggregate_style_loss += style_loss.data.item()
# calculate content loss (h_relu_2_2)
recon = y_c_features[1]
recon_hat = y_hat_features[1]
content_loss = CONTENT_WEIGHT*loss_mse(recon_hat, recon)
aggregate_content_loss += content_loss.data.item()
# calculate l1 loss
l1_loss = L1_WEIGHT*loss_mse(y_hat, y_label)
aggregate_l1_loss += l1_loss.data.item()
# total loss
# total_loss = style_loss + content_loss + tv_loss + l1_loss + dis_loss
total_loss = style_loss + l1_loss + content_loss
# backprop
total_loss.backward()
optimizer.step()
# print out status message
if ((batch_num + 1) % 100 == 0):
status = "{} Epoch {}: [{}/{}] Batch:[{}] agg_style: {:.6f} agg_l1: {:.6f} agg_content: {:.6f} ".format(
time.ctime(), e + 1, img_count, len(train_dataset), batch_num+1,
aggregate_style_loss/(batch_num+1.0), aggregate_l1_loss/(batch_num+1.0), aggregate_content_loss/(batch_num+1.0)
)
print(status)
if ((batch_num + 1) % 5000 == 0) and (visualize):
image_transformer_dpws.eval()
if not os.path.exists("visualization"):
os.makedirs("visualization")
outputTestImage_maine = image_transformer_dpws(testImage_maine)
test_path = "visualization/%s/%s%d_%05d.jpg" %(style_name, test_name, e+1, batch_num+1)
utils.save_image(test_path, outputTestImage_maine.data[0].cpu())
print("images saved")
image_transformer_dpws.train()
# save model
image_transformer_dpws.eval()
if use_cuda:
image_transformer_dpws.cpu()
if not os.path.exists("models"):
os.makedirs("models")
filename = "models/%s.model" %style_name
torch.save(image_transformer_dpws.state_dict(), filename)
if use_cuda:
image_transformer_dpws.cuda()
def style_transfer(args):
# GPU enabling
if (args.gpu != None):
use_cuda = True
dtype = torch.cuda.FloatTensor
torch.cuda.set_device(args.gpu)
print("Current device: %d" %torch.cuda.current_device())
else :
dtype = torch.FloatTensor
# content image
img_transform_512 = transforms.Compose([
# transforms.Scale(512), # scale shortest side to image_size
transforms.Resize(512), # scale shortest side to image_size
# transforms.CenterCrop(512), # crop center image_size out
transforms.ToTensor(), # turn image from [0-255] to [0-1]
utils.normalize_tensor_transform() # normalize with ImageNet values
])
content = utils.load_image(args.source)
content = img_transform_512(content)
content = content.unsqueeze(0)
# content = Variable(content).type(dtype)
content = Variable(content.repeat(1, 1, 1, 1), requires_grad=False).type(dtype)
# load style model
checkpoint_lw = torch.load(args.model_path)
style_model = ImageTransformNet_dpws().type(dtype)
style_model.load_state_dict((checkpoint_lw))
# process input image
stylized = style_model(content).cpu()
utils.save_image(args.output, stylized.data[0])
def main():
parser = argparse.ArgumentParser(description='style transfer in pytorch')
subparsers = parser.add_subparsers(title="subcommands", dest="subcommand")
train_parser = subparsers.add_parser("train", help="train a model to do style transfer")
train_parser.add_argument("--style_image", type=str, required=True, help="path to a style image to train with")
train_parser.add_argument("--test_image", type=str, required=True, help="path to a test image to test with")
train_parser.add_argument("--dataset", type=str, required=True, help="path to a dataset")
train_parser.add_argument("--gpu", type=int, default=None, help="ID of GPU to be used")
train_parser.add_argument("--visualize", type=int, default=None, help="Set to 1 if you want to visualize training")
style_parser = subparsers.add_parser("transfer", help="do style transfer with a trained model")
style_parser.add_argument("--model_path", type=str, required=True, help="path to a pretrained model for a style image")
style_parser.add_argument("--source", type=str, required=True, help="path to source image")
style_parser.add_argument("--output", type=str, required=True, help="file name for stylized output image")
style_parser.add_argument("--gpu", type=int, default=None, help="ID of GPU to be used")
args = parser.parse_args()
# command
if (args.subcommand == "train"):
print("Training!")
train(args)
elif (args.subcommand == "transfer"):
print("Style transfering!")
style_transfer(args)
else:
print("invalid command")
if __name__ == '__main__':
main()