Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,45 +2,75 @@ import os
|
|
| 2 |
import torch
|
| 3 |
from fastapi import FastAPI, Request
|
| 4 |
from fastapi.responses import JSONResponse
|
| 5 |
-
from fastapi.staticfiles import StaticFiles
|
| 6 |
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
import gradio as gr
|
| 8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 9 |
-
from transformers import pipeline
|
| 10 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Ensure cache directories exist
|
| 13 |
-
os.makedirs(os.
|
| 14 |
-
os.makedirs(os.
|
| 15 |
|
| 16 |
# Initialize FastAPI app
|
| 17 |
app = FastAPI()
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
def load_model():
|
|
|
|
| 21 |
model_name = "trillionlabs/Trillion-7B-preview-AWQ"
|
| 22 |
|
| 23 |
-
|
| 24 |
try:
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 26 |
model_name,
|
| 27 |
trust_remote_code=True
|
| 28 |
)
|
| 29 |
except Exception as e:
|
| 30 |
-
|
| 31 |
-
# Fallback to
|
| 32 |
from transformers import LlamaTokenizer
|
| 33 |
tokenizer = LlamaTokenizer.from_pretrained(model_name)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
text_generator = pipeline(
|
| 45 |
"text-generation",
|
| 46 |
model=model,
|
|
@@ -52,21 +82,25 @@ def load_model():
|
|
| 52 |
|
| 53 |
# Load model
|
| 54 |
try:
|
|
|
|
| 55 |
text_generator = load_model()
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
-
|
| 58 |
-
# You might want to exit here or load a smaller model instead
|
| 59 |
raise
|
| 60 |
|
| 61 |
-
# API
|
| 62 |
@app.post("/api/generate")
|
| 63 |
-
async def
|
|
|
|
| 64 |
try:
|
| 65 |
data = await request.json()
|
| 66 |
-
prompt = data.get("prompt", "")
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
# Generate text with timing
|
| 70 |
start_time = time.time()
|
| 71 |
outputs = text_generator(
|
| 72 |
prompt,
|
|
@@ -75,23 +109,39 @@ async def generate_text(request: Request):
|
|
| 75 |
temperature=0.7,
|
| 76 |
top_k=50,
|
| 77 |
top_p=0.95,
|
| 78 |
-
pad_token_id=
|
| 79 |
)
|
| 80 |
generation_time = time.time() - start_time
|
| 81 |
|
| 82 |
return JSONResponse({
|
| 83 |
"generated_text": outputs[0]["generated_text"],
|
| 84 |
-
"
|
|
|
|
| 85 |
"model": "Trillion-7B-preview-AWQ",
|
| 86 |
"device": "cpu"
|
| 87 |
})
|
| 88 |
except Exception as e:
|
|
|
|
| 89 |
return JSONResponse({"error": str(e)}, status_code=500)
|
| 90 |
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
def gradio_generate(prompt, max_length=100):
|
|
|
|
| 93 |
try:
|
| 94 |
-
max_length = min(int(max_length),
|
|
|
|
|
|
|
|
|
|
| 95 |
outputs = text_generator(
|
| 96 |
prompt,
|
| 97 |
max_length=max_length,
|
|
@@ -99,69 +149,72 @@ def gradio_generate(prompt, max_length=100):
|
|
| 99 |
temperature=0.7,
|
| 100 |
top_k=50,
|
| 101 |
top_p=0.95,
|
| 102 |
-
pad_token_id=0
|
| 103 |
)
|
| 104 |
return outputs[0]["generated_text"]
|
| 105 |
except Exception as e:
|
|
|
|
| 106 |
return f"Error generating text: {str(e)}"
|
| 107 |
|
| 108 |
-
with gr.Blocks() as gradio_app:
|
| 109 |
gr.Markdown("""
|
| 110 |
-
# Trillion-7B-preview-AWQ
|
| 111 |
-
*Running on CPU with
|
| 112 |
""")
|
| 113 |
|
| 114 |
with gr.Row():
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
minimum=50,
|
| 129 |
-
maximum=500,
|
| 130 |
-
value=100,
|
| 131 |
-
step=10,
|
| 132 |
-
label="Max Length"
|
| 133 |
-
)
|
| 134 |
-
generate_btn = gr.Button("Generate", variant="primary")
|
| 135 |
-
|
| 136 |
-
# Additional examples
|
| 137 |
-
examples = gr.Examples(
|
| 138 |
examples=[
|
| 139 |
-
["Explain quantum computing in simple terms
|
| 140 |
-
["Write a
|
| 141 |
-
["
|
|
|
|
| 142 |
],
|
| 143 |
-
inputs=input_prompt
|
|
|
|
| 144 |
)
|
| 145 |
|
| 146 |
generate_btn.click(
|
| 147 |
fn=gradio_generate,
|
| 148 |
-
inputs=[input_prompt,
|
| 149 |
outputs=output_text
|
| 150 |
)
|
| 151 |
|
| 152 |
# Mount Gradio app
|
| 153 |
app = gr.mount_gradio_app(app, gradio_app, path="/")
|
| 154 |
|
| 155 |
-
# CORS
|
| 156 |
app.add_middleware(
|
| 157 |
CORSMiddleware,
|
| 158 |
allow_origins=["*"],
|
| 159 |
-
allow_credentials=True,
|
| 160 |
allow_methods=["*"],
|
| 161 |
allow_headers=["*"],
|
| 162 |
)
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
return {"status": "healthy", "model_loaded": text_generator is not None}
|
|
|
|
| 2 |
import torch
|
| 3 |
from fastapi import FastAPI, Request
|
| 4 |
from fastapi.responses import JSONResponse
|
|
|
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
import gradio as gr
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
| 8 |
import time
|
| 9 |
+
import warnings
|
| 10 |
+
|
| 11 |
+
# Suppress specific warnings
|
| 12 |
+
warnings.filterwarnings("ignore", category=FutureWarning, module="transformers.utils.hub")
|
| 13 |
+
|
| 14 |
+
# Configure environment variables for cache
|
| 15 |
+
os.environ["HF_HOME"] = os.getenv("HF_HOME", "/app/cache/huggingface")
|
| 16 |
+
os.environ["MPLCONFIGDIR"] = os.getenv("MPLCONFIGDIR", "/app/cache/matplotlib")
|
| 17 |
|
| 18 |
# Ensure cache directories exist
|
| 19 |
+
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
|
| 20 |
+
os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)
|
| 21 |
|
| 22 |
# Initialize FastAPI app
|
| 23 |
app = FastAPI()
|
| 24 |
|
| 25 |
+
def log_message(message: str):
|
| 26 |
+
"""Helper function for logging"""
|
| 27 |
+
print(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {message}")
|
| 28 |
+
|
| 29 |
def load_model():
|
| 30 |
+
"""Load the model with CPU optimization"""
|
| 31 |
model_name = "trillionlabs/Trillion-7B-preview-AWQ"
|
| 32 |
|
| 33 |
+
log_message("Loading tokenizer...")
|
| 34 |
try:
|
| 35 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 36 |
model_name,
|
| 37 |
trust_remote_code=True
|
| 38 |
)
|
| 39 |
except Exception as e:
|
| 40 |
+
log_message(f"Tokenizer loading failed: {e}")
|
| 41 |
+
# Fallback to LlamaTokenizer if available
|
| 42 |
from transformers import LlamaTokenizer
|
| 43 |
tokenizer = LlamaTokenizer.from_pretrained(model_name)
|
| 44 |
|
| 45 |
+
log_message("Loading model...")
|
| 46 |
+
try:
|
| 47 |
+
# Try loading with IPEX optimization if available
|
| 48 |
+
try:
|
| 49 |
+
import intel_extension_for_pytorch as ipex
|
| 50 |
+
use_ipex = True
|
| 51 |
+
except ImportError:
|
| 52 |
+
use_ipex = False
|
| 53 |
+
log_message("IPEX not available, using standard CPU version")
|
| 54 |
+
|
| 55 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
+
model_name,
|
| 57 |
+
torch_dtype=torch.float32,
|
| 58 |
+
trust_remote_code=True
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
if use_ipex:
|
| 62 |
+
log_message("Applying IPEX optimization...")
|
| 63 |
+
model = ipex.optimize(model)
|
| 64 |
+
|
| 65 |
+
# Explicitly move to CPU
|
| 66 |
+
model = model.to("cpu")
|
| 67 |
+
model.eval()
|
| 68 |
+
|
| 69 |
+
except Exception as e:
|
| 70 |
+
log_message(f"Model loading failed: {e}")
|
| 71 |
+
raise
|
| 72 |
|
| 73 |
+
log_message("Creating pipeline...")
|
| 74 |
text_generator = pipeline(
|
| 75 |
"text-generation",
|
| 76 |
model=model,
|
|
|
|
| 82 |
|
| 83 |
# Load model
|
| 84 |
try:
|
| 85 |
+
log_message("Starting model loading process...")
|
| 86 |
text_generator = load_model()
|
| 87 |
+
log_message("Model loaded successfully")
|
| 88 |
except Exception as e:
|
| 89 |
+
log_message(f"Critical error loading model: {e}")
|
|
|
|
| 90 |
raise
|
| 91 |
|
| 92 |
+
# API endpoints
|
| 93 |
@app.post("/api/generate")
|
| 94 |
+
async def api_generate(request: Request):
|
| 95 |
+
"""API endpoint for text generation"""
|
| 96 |
try:
|
| 97 |
data = await request.json()
|
| 98 |
+
prompt = data.get("prompt", "").strip()
|
| 99 |
+
if not prompt:
|
| 100 |
+
return JSONResponse({"error": "Prompt cannot be empty"}, status_code=400)
|
| 101 |
+
|
| 102 |
+
max_length = min(int(data.get("max_length", 100)), 300) # Conservative limit
|
| 103 |
|
|
|
|
| 104 |
start_time = time.time()
|
| 105 |
outputs = text_generator(
|
| 106 |
prompt,
|
|
|
|
| 109 |
temperature=0.7,
|
| 110 |
top_k=50,
|
| 111 |
top_p=0.95,
|
| 112 |
+
pad_token_id=tokenizer.eos_token_id if hasattr(text_generator, 'tokenizer') else 0
|
| 113 |
)
|
| 114 |
generation_time = time.time() - start_time
|
| 115 |
|
| 116 |
return JSONResponse({
|
| 117 |
"generated_text": outputs[0]["generated_text"],
|
| 118 |
+
"time_seconds": round(generation_time, 2),
|
| 119 |
+
"tokens_generated": len(text_generator.tokenizer.tokenize(outputs[0]["generated_text"]) if hasattr(text_generator, 'tokenizer') else None,
|
| 120 |
"model": "Trillion-7B-preview-AWQ",
|
| 121 |
"device": "cpu"
|
| 122 |
})
|
| 123 |
except Exception as e:
|
| 124 |
+
log_message(f"API Error: {e}")
|
| 125 |
return JSONResponse({"error": str(e)}, status_code=500)
|
| 126 |
|
| 127 |
+
@app.get("/health")
|
| 128 |
+
async def health_check():
|
| 129 |
+
"""Health check endpoint"""
|
| 130 |
+
return {
|
| 131 |
+
"status": "healthy",
|
| 132 |
+
"model_loaded": text_generator is not None,
|
| 133 |
+
"device": "cpu",
|
| 134 |
+
"cache_path": os.environ["HF_HOME"]
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
# Gradio Interface
|
| 138 |
def gradio_generate(prompt, max_length=100):
|
| 139 |
+
"""Function for Gradio interface generation"""
|
| 140 |
try:
|
| 141 |
+
max_length = min(int(max_length), 300) # Same conservative limit as API
|
| 142 |
+
if not prompt.strip():
|
| 143 |
+
return "Please enter a prompt"
|
| 144 |
+
|
| 145 |
outputs = text_generator(
|
| 146 |
prompt,
|
| 147 |
max_length=max_length,
|
|
|
|
| 149 |
temperature=0.7,
|
| 150 |
top_k=50,
|
| 151 |
top_p=0.95,
|
| 152 |
+
pad_token_id=tokenizer.eos_token_id if hasattr(text_generator, 'tokenizer') else 0
|
| 153 |
)
|
| 154 |
return outputs[0]["generated_text"]
|
| 155 |
except Exception as e:
|
| 156 |
+
log_message(f"Gradio Error: {e}")
|
| 157 |
return f"Error generating text: {str(e)}"
|
| 158 |
|
| 159 |
+
with gr.Blocks(title="Trillion-7B CPU Demo", theme=gr.themes.Default()) as gradio_app:
|
| 160 |
gr.Markdown("""
|
| 161 |
+
# 🚀 Trillion-7B-preview-AWQ (CPU Version)
|
| 162 |
+
*Running on CPU with optimized settings - responses may be slower than GPU versions*
|
| 163 |
""")
|
| 164 |
|
| 165 |
with gr.Row():
|
| 166 |
+
with gr.Column():
|
| 167 |
+
input_prompt = gr.Textbox(
|
| 168 |
+
label="Your Prompt",
|
| 169 |
+
placeholder="Enter text here...",
|
| 170 |
+
lines=5,
|
| 171 |
+
max_lines=10
|
| 172 |
+
)
|
| 173 |
+
with gr.Row():
|
| 174 |
+
max_length = gr.Slider(
|
| 175 |
+
label="Max Length",
|
| 176 |
+
minimum=20,
|
| 177 |
+
maximum=300,
|
| 178 |
+
value=100,
|
| 179 |
+
step=10
|
| 180 |
+
)
|
| 181 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 182 |
+
with gr.Column():
|
| 183 |
+
output_text = gr.Textbox(
|
| 184 |
+
label="Generated Text",
|
| 185 |
+
lines=10,
|
| 186 |
+
interactive=False
|
| 187 |
+
)
|
| 188 |
|
| 189 |
+
# Examples
|
| 190 |
+
gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
examples=[
|
| 192 |
+
["Explain quantum computing in simple terms"],
|
| 193 |
+
["Write a haiku about artificial intelligence"],
|
| 194 |
+
["What are the main benefits of renewable energy?"],
|
| 195 |
+
["Suggest three ideas for a science fiction story"]
|
| 196 |
],
|
| 197 |
+
inputs=input_prompt,
|
| 198 |
+
label="Example Prompts"
|
| 199 |
)
|
| 200 |
|
| 201 |
generate_btn.click(
|
| 202 |
fn=gradio_generate,
|
| 203 |
+
inputs=[input_prompt, max_length],
|
| 204 |
outputs=output_text
|
| 205 |
)
|
| 206 |
|
| 207 |
# Mount Gradio app
|
| 208 |
app = gr.mount_gradio_app(app, gradio_app, path="/")
|
| 209 |
|
| 210 |
+
# CORS configuration
|
| 211 |
app.add_middleware(
|
| 212 |
CORSMiddleware,
|
| 213 |
allow_origins=["*"],
|
|
|
|
| 214 |
allow_methods=["*"],
|
| 215 |
allow_headers=["*"],
|
| 216 |
)
|
| 217 |
|
| 218 |
+
if __name__ == "__main__":
|
| 219 |
+
import uvicorn
|
| 220 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|