Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
pipe = pipeline(task="text2text-generation", model="Jumpy-pku/t5-dish-name-recognition") | |
pipe_aux = pipeline(task="text2text-generation", model="Jumpy-pku/t5-dish-name-recognition-auxiliary") | |
def predict(input_text): | |
verbs = pipe_aux(f"“{input_text}”这个菜谱的主要操作是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"] | |
flavs = pipe_aux(f"“{input_text}”这个菜谱的主要风味是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"] | |
ings = pipe_aux(f"“{input_text}”这个菜谱的主要食材是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"] | |
comp_prompt = "" | |
if verbs: | |
comp_prompt += f"这个菜谱的主要操作是{verbs}," | |
if flavs: | |
comp_prompt += f"这个菜谱的主要风味是{flavs}," | |
if ings: | |
comp_prompt += f"这个菜谱的主要食材是{ings}," | |
comp_prompt += "这个菜谱的菜名是什么?" | |
return pipe(f"“{input_text}”{comp_prompt}", max_length=20, num_return_sequences=1)[0]["generated_text"] | |
demo = gr.Interface(fn=predict, inputs="text", outputs="text", title="菜名生成", description="Input the instructions of a Chinese recipe, the model will generate the corresponding dish name.\n输入菜谱步骤,生成菜名。") | |
demo.launch() |