Spaces:
Build error
Build error
Julius8888
commited on
Commit
•
b58aba6
1
Parent(s):
f84c9ca
Upload 40 files
Browse files- .gitattributes +0 -2
- .gitignore +162 -0
- .gitmodules +0 -0
- .pre-commit-config.yaml +25 -0
- Dockerfile +61 -0
- LICENSE +661 -0
- README.md +6 -6
- app.py +555 -0
- attentions.py +464 -0
- author_and_voice_data.json +4 -0
- bert_gen.py +81 -0
- clap_gen.py +64 -0
- clap_wrapper.py +49 -0
- commons.py +158 -0
- compress_model.py +89 -0
- config.py +248 -0
- config.yml +177 -0
- data_utils.py +405 -0
- default_config.yml +177 -0
- empty_emo.npy +0 -0
- export_onnx.py +14 -0
- infer.py +411 -0
- losses.py +153 -0
- mel_processing.py +142 -0
- models.py +1076 -0
- modules.py +597 -0
- onnx_infer.py +68 -0
- preprocess_text.py +141 -0
- re_matching.py +81 -0
- requirements.txt +32 -0
- resample.py +75 -0
- resample_legacy.py +71 -0
- run_MnodesAndMgpus.sh +31 -0
- server_fastapi.py +680 -0
- spec_gen.py +87 -0
- train_ms.py +840 -0
- transforms.py +209 -0
- update_status.py +89 -0
- utils.py +461 -0
- webui_preprocess.py +166 -0
.gitattributes
CHANGED
@@ -11,13 +11,11 @@
|
|
11 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
11 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
14 |
*.npz filter=lfs diff=lfs merge=lfs -text
|
15 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
16 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
17 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
19 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
20 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
.DS_Store
|
.gitmodules
ADDED
File without changes
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.5.0
|
4 |
+
hooks:
|
5 |
+
- id: check-yaml
|
6 |
+
- id: end-of-file-fixer
|
7 |
+
- id: trailing-whitespace
|
8 |
+
|
9 |
+
- repo: https://github.com/astral-sh/ruff-pre-commit
|
10 |
+
rev: v0.1.8
|
11 |
+
hooks:
|
12 |
+
- id: ruff
|
13 |
+
args: [ --fix ]
|
14 |
+
|
15 |
+
- repo: https://github.com/psf/black
|
16 |
+
rev: 23.12.0
|
17 |
+
hooks:
|
18 |
+
- id: black
|
19 |
+
|
20 |
+
- repo: https://github.com/codespell-project/codespell
|
21 |
+
rev: v2.2.6
|
22 |
+
hooks:
|
23 |
+
- id: codespell
|
24 |
+
files: ^.*\.(py|md|rst|yml)$
|
25 |
+
args: [-L=fro]
|
Dockerfile
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dockerfile
|
2 |
+
FROM python:3.10.12
|
3 |
+
|
4 |
+
## Set working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
## Set the timezone
|
8 |
+
ENV TZ=Asia/Taipei
|
9 |
+
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
|
10 |
+
|
11 |
+
# Copy files
|
12 |
+
COPY . .
|
13 |
+
|
14 |
+
RUN cd bert && ls && pwd
|
15 |
+
|
16 |
+
# Clone the Bert repository
|
17 |
+
RUN wget https://huggingface.co/microsoft/wavlm-base-plus/resolve/main/pytorch_model.bin?download=true -O slm/wavlm-base-plus/pytorch_model.bin && \
|
18 |
+
wget https://huggingface.co/ku-nlp/deberta-v2-large-japanese-char-wwm/resolve/main/pytorch_model.bin?download=true -O bert/deberta-v2-large-japanese-char-wwm/pytorch_model.bin && \
|
19 |
+
wget https://huggingface.co/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin?download=true -O bert/chinese-roberta-wwm-ext-large/pytorch_model.bin && \
|
20 |
+
wget https://huggingface.co/microsoft/deberta-v3-large/resolve/main/pytorch_model.bin?download=true -O bert/deberta-v3-large/pytorch_model.bin && \
|
21 |
+
wget https://huggingface.co/microsoft/deberta-v3-large/resolve/main/spm.model?download=true -O bert/deberta-v3-large/spm.model && \
|
22 |
+
git clone --depth 1 https://huggingface.co/laion/clap-htsat-fused emotional/clap-htsat-fused && \
|
23 |
+
git clone --depth 1 https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim
|
24 |
+
|
25 |
+
RUN cd bert && ls
|
26 |
+
|
27 |
+
RUN cd bert/deberta-v3-large && ls -lh
|
28 |
+
|
29 |
+
# Install Python requirements
|
30 |
+
RUN pip install -r requirements.txt
|
31 |
+
|
32 |
+
|
33 |
+
# Set Gradio server name
|
34 |
+
ENV GRADIO_SERVER_NAME=0.0.0.0
|
35 |
+
|
36 |
+
RUN chmod 777 /usr
|
37 |
+
RUN chmod 777 /app
|
38 |
+
|
39 |
+
RUN wget https://github.com/r9y9/open_jtalk/releases/download/v1.11.1/open_jtalk_dic_utf_8-1.11.tar.gz -O /usr/local/lib/python3.10/site-packages/pyopenjtalk/dic.tar.gz
|
40 |
+
RUN chmod 777 /usr/local/lib/python3.10/site-packages/pyopenjtalk/dic.tar.gz
|
41 |
+
RUN chmod 777 /usr/local/lib/python3.10/site-packages/pyopenjtalk
|
42 |
+
|
43 |
+
|
44 |
+
RUN mkdir /nltk_data && \
|
45 |
+
chmod 777 /nltk_data && \
|
46 |
+
mkdir /temp && \
|
47 |
+
chmod 777 /temp && \
|
48 |
+
mkdir /temp/matplotlib && \
|
49 |
+
mkdir /temp/huggingface && \
|
50 |
+
mkdir /temp/numba
|
51 |
+
|
52 |
+
ENV NUMBA_CACHE_DIR=/temp/numba
|
53 |
+
ENV MPLCONFIGDIR=/temp/matplotlib
|
54 |
+
ENV HF_HOME=/temp/huggingface
|
55 |
+
ENV HOME=/app
|
56 |
+
|
57 |
+
# Expose port
|
58 |
+
EXPOSE 7860
|
59 |
+
|
60 |
+
# Run the application
|
61 |
+
CMD ["python", "app.py"]
|
LICENSE
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 19 November 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU Affero General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works, specifically designed to ensure
|
12 |
+
cooperation with the community in the case of network server software.
|
13 |
+
|
14 |
+
The licenses for most software and other practical works are designed
|
15 |
+
to take away your freedom to share and change the works. By contrast,
|
16 |
+
our General Public Licenses are intended to guarantee your freedom to
|
17 |
+
share and change all versions of a program--to make sure it remains free
|
18 |
+
software for all its users.
|
19 |
+
|
20 |
+
When we speak of free software, we are referring to freedom, not
|
21 |
+
price. Our General Public Licenses are designed to make sure that you
|
22 |
+
have the freedom to distribute copies of free software (and charge for
|
23 |
+
them if you wish), that you receive source code or can get it if you
|
24 |
+
want it, that you can change the software or use pieces of it in new
|
25 |
+
free programs, and that you know you can do these things.
|
26 |
+
|
27 |
+
Developers that use our General Public Licenses protect your rights
|
28 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
29 |
+
you this License which gives you legal permission to copy, distribute
|
30 |
+
and/or modify the software.
|
31 |
+
|
32 |
+
A secondary benefit of defending all users' freedom is that
|
33 |
+
improvements made in alternate versions of the program, if they
|
34 |
+
receive widespread use, become available for other developers to
|
35 |
+
incorporate. Many developers of free software are heartened and
|
36 |
+
encouraged by the resulting cooperation. However, in the case of
|
37 |
+
software used on network servers, this result may fail to come about.
|
38 |
+
The GNU General Public License permits making a modified version and
|
39 |
+
letting the public access it on a server without ever releasing its
|
40 |
+
source code to the public.
|
41 |
+
|
42 |
+
The GNU Affero General Public License is designed specifically to
|
43 |
+
ensure that, in such cases, the modified source code becomes available
|
44 |
+
to the community. It requires the operator of a network server to
|
45 |
+
provide the source code of the modified version running there to the
|
46 |
+
users of that server. Therefore, public use of a modified version, on
|
47 |
+
a publicly accessible server, gives the public access to the source
|
48 |
+
code of the modified version.
|
49 |
+
|
50 |
+
An older license, called the Affero General Public License and
|
51 |
+
published by Affero, was designed to accomplish similar goals. This is
|
52 |
+
a different license, not a version of the Affero GPL, but Affero has
|
53 |
+
released a new version of the Affero GPL which permits relicensing under
|
54 |
+
this license.
|
55 |
+
|
56 |
+
The precise terms and conditions for copying, distribution and
|
57 |
+
modification follow.
|
58 |
+
|
59 |
+
TERMS AND CONDITIONS
|
60 |
+
|
61 |
+
0. Definitions.
|
62 |
+
|
63 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
64 |
+
|
65 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
66 |
+
works, such as semiconductor masks.
|
67 |
+
|
68 |
+
"The Program" refers to any copyrightable work licensed under this
|
69 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
70 |
+
"recipients" may be individuals or organizations.
|
71 |
+
|
72 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
73 |
+
in a fashion requiring copyright permission, other than the making of an
|
74 |
+
exact copy. The resulting work is called a "modified version" of the
|
75 |
+
earlier work or a work "based on" the earlier work.
|
76 |
+
|
77 |
+
A "covered work" means either the unmodified Program or a work based
|
78 |
+
on the Program.
|
79 |
+
|
80 |
+
To "propagate" a work means to do anything with it that, without
|
81 |
+
permission, would make you directly or secondarily liable for
|
82 |
+
infringement under applicable copyright law, except executing it on a
|
83 |
+
computer or modifying a private copy. Propagation includes copying,
|
84 |
+
distribution (with or without modification), making available to the
|
85 |
+
public, and in some countries other activities as well.
|
86 |
+
|
87 |
+
To "convey" a work means any kind of propagation that enables other
|
88 |
+
parties to make or receive copies. Mere interaction with a user through
|
89 |
+
a computer network, with no transfer of a copy, is not conveying.
|
90 |
+
|
91 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
92 |
+
to the extent that it includes a convenient and prominently visible
|
93 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
94 |
+
tells the user that there is no warranty for the work (except to the
|
95 |
+
extent that warranties are provided), that licensees may convey the
|
96 |
+
work under this License, and how to view a copy of this License. If
|
97 |
+
the interface presents a list of user commands or options, such as a
|
98 |
+
menu, a prominent item in the list meets this criterion.
|
99 |
+
|
100 |
+
1. Source Code.
|
101 |
+
|
102 |
+
The "source code" for a work means the preferred form of the work
|
103 |
+
for making modifications to it. "Object code" means any non-source
|
104 |
+
form of a work.
|
105 |
+
|
106 |
+
A "Standard Interface" means an interface that either is an official
|
107 |
+
standard defined by a recognized standards body, or, in the case of
|
108 |
+
interfaces specified for a particular programming language, one that
|
109 |
+
is widely used among developers working in that language.
|
110 |
+
|
111 |
+
The "System Libraries" of an executable work include anything, other
|
112 |
+
than the work as a whole, that (a) is included in the normal form of
|
113 |
+
packaging a Major Component, but which is not part of that Major
|
114 |
+
Component, and (b) serves only to enable use of the work with that
|
115 |
+
Major Component, or to implement a Standard Interface for which an
|
116 |
+
implementation is available to the public in source code form. A
|
117 |
+
"Major Component", in this context, means a major essential component
|
118 |
+
(kernel, window system, and so on) of the specific operating system
|
119 |
+
(if any) on which the executable work runs, or a compiler used to
|
120 |
+
produce the work, or an object code interpreter used to run it.
|
121 |
+
|
122 |
+
The "Corresponding Source" for a work in object code form means all
|
123 |
+
the source code needed to generate, install, and (for an executable
|
124 |
+
work) run the object code and to modify the work, including scripts to
|
125 |
+
control those activities. However, it does not include the work's
|
126 |
+
System Libraries, or general-purpose tools or generally available free
|
127 |
+
programs which are used unmodified in performing those activities but
|
128 |
+
which are not part of the work. For example, Corresponding Source
|
129 |
+
includes interface definition files associated with source files for
|
130 |
+
the work, and the source code for shared libraries and dynamically
|
131 |
+
linked subprograms that the work is specifically designed to require,
|
132 |
+
such as by intimate data communication or control flow between those
|
133 |
+
subprograms and other parts of the work.
|
134 |
+
|
135 |
+
The Corresponding Source need not include anything that users
|
136 |
+
can regenerate automatically from other parts of the Corresponding
|
137 |
+
Source.
|
138 |
+
|
139 |
+
The Corresponding Source for a work in source code form is that
|
140 |
+
same work.
|
141 |
+
|
142 |
+
2. Basic Permissions.
|
143 |
+
|
144 |
+
All rights granted under this License are granted for the term of
|
145 |
+
copyright on the Program, and are irrevocable provided the stated
|
146 |
+
conditions are met. This License explicitly affirms your unlimited
|
147 |
+
permission to run the unmodified Program. The output from running a
|
148 |
+
covered work is covered by this License only if the output, given its
|
149 |
+
content, constitutes a covered work. This License acknowledges your
|
150 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
151 |
+
|
152 |
+
You may make, run and propagate covered works that you do not
|
153 |
+
convey, without conditions so long as your license otherwise remains
|
154 |
+
in force. You may convey covered works to others for the sole purpose
|
155 |
+
of having them make modifications exclusively for you, or provide you
|
156 |
+
with facilities for running those works, provided that you comply with
|
157 |
+
the terms of this License in conveying all material for which you do
|
158 |
+
not control copyright. Those thus making or running the covered works
|
159 |
+
for you must do so exclusively on your behalf, under your direction
|
160 |
+
and control, on terms that prohibit them from making any copies of
|
161 |
+
your copyrighted material outside their relationship with you.
|
162 |
+
|
163 |
+
Conveying under any other circumstances is permitted solely under
|
164 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
165 |
+
makes it unnecessary.
|
166 |
+
|
167 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
168 |
+
|
169 |
+
No covered work shall be deemed part of an effective technological
|
170 |
+
measure under any applicable law fulfilling obligations under article
|
171 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
172 |
+
similar laws prohibiting or restricting circumvention of such
|
173 |
+
measures.
|
174 |
+
|
175 |
+
When you convey a covered work, you waive any legal power to forbid
|
176 |
+
circumvention of technological measures to the extent such circumvention
|
177 |
+
is effected by exercising rights under this License with respect to
|
178 |
+
the covered work, and you disclaim any intention to limit operation or
|
179 |
+
modification of the work as a means of enforcing, against the work's
|
180 |
+
users, your or third parties' legal rights to forbid circumvention of
|
181 |
+
technological measures.
|
182 |
+
|
183 |
+
4. Conveying Verbatim Copies.
|
184 |
+
|
185 |
+
You may convey verbatim copies of the Program's source code as you
|
186 |
+
receive it, in any medium, provided that you conspicuously and
|
187 |
+
appropriately publish on each copy an appropriate copyright notice;
|
188 |
+
keep intact all notices stating that this License and any
|
189 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
190 |
+
keep intact all notices of the absence of any warranty; and give all
|
191 |
+
recipients a copy of this License along with the Program.
|
192 |
+
|
193 |
+
You may charge any price or no price for each copy that you convey,
|
194 |
+
and you may offer support or warranty protection for a fee.
|
195 |
+
|
196 |
+
5. Conveying Modified Source Versions.
|
197 |
+
|
198 |
+
You may convey a work based on the Program, or the modifications to
|
199 |
+
produce it from the Program, in the form of source code under the
|
200 |
+
terms of section 4, provided that you also meet all of these conditions:
|
201 |
+
|
202 |
+
a) The work must carry prominent notices stating that you modified
|
203 |
+
it, and giving a relevant date.
|
204 |
+
|
205 |
+
b) The work must carry prominent notices stating that it is
|
206 |
+
released under this License and any conditions added under section
|
207 |
+
7. This requirement modifies the requirement in section 4 to
|
208 |
+
"keep intact all notices".
|
209 |
+
|
210 |
+
c) You must license the entire work, as a whole, under this
|
211 |
+
License to anyone who comes into possession of a copy. This
|
212 |
+
License will therefore apply, along with any applicable section 7
|
213 |
+
additional terms, to the whole of the work, and all its parts,
|
214 |
+
regardless of how they are packaged. This License gives no
|
215 |
+
permission to license the work in any other way, but it does not
|
216 |
+
invalidate such permission if you have separately received it.
|
217 |
+
|
218 |
+
d) If the work has interactive user interfaces, each must display
|
219 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
220 |
+
interfaces that do not display Appropriate Legal Notices, your
|
221 |
+
work need not make them do so.
|
222 |
+
|
223 |
+
A compilation of a covered work with other separate and independent
|
224 |
+
works, which are not by their nature extensions of the covered work,
|
225 |
+
and which are not combined with it such as to form a larger program,
|
226 |
+
in or on a volume of a storage or distribution medium, is called an
|
227 |
+
"aggregate" if the compilation and its resulting copyright are not
|
228 |
+
used to limit the access or legal rights of the compilation's users
|
229 |
+
beyond what the individual works permit. Inclusion of a covered work
|
230 |
+
in an aggregate does not cause this License to apply to the other
|
231 |
+
parts of the aggregate.
|
232 |
+
|
233 |
+
6. Conveying Non-Source Forms.
|
234 |
+
|
235 |
+
You may convey a covered work in object code form under the terms
|
236 |
+
of sections 4 and 5, provided that you also convey the
|
237 |
+
machine-readable Corresponding Source under the terms of this License,
|
238 |
+
in one of these ways:
|
239 |
+
|
240 |
+
a) Convey the object code in, or embodied in, a physical product
|
241 |
+
(including a physical distribution medium), accompanied by the
|
242 |
+
Corresponding Source fixed on a durable physical medium
|
243 |
+
customarily used for software interchange.
|
244 |
+
|
245 |
+
b) Convey the object code in, or embodied in, a physical product
|
246 |
+
(including a physical distribution medium), accompanied by a
|
247 |
+
written offer, valid for at least three years and valid for as
|
248 |
+
long as you offer spare parts or customer support for that product
|
249 |
+
model, to give anyone who possesses the object code either (1) a
|
250 |
+
copy of the Corresponding Source for all the software in the
|
251 |
+
product that is covered by this License, on a durable physical
|
252 |
+
medium customarily used for software interchange, for a price no
|
253 |
+
more than your reasonable cost of physically performing this
|
254 |
+
conveying of source, or (2) access to copy the
|
255 |
+
Corresponding Source from a network server at no charge.
|
256 |
+
|
257 |
+
c) Convey individual copies of the object code with a copy of the
|
258 |
+
written offer to provide the Corresponding Source. This
|
259 |
+
alternative is allowed only occasionally and noncommercially, and
|
260 |
+
only if you received the object code with such an offer, in accord
|
261 |
+
with subsection 6b.
|
262 |
+
|
263 |
+
d) Convey the object code by offering access from a designated
|
264 |
+
place (gratis or for a charge), and offer equivalent access to the
|
265 |
+
Corresponding Source in the same way through the same place at no
|
266 |
+
further charge. You need not require recipients to copy the
|
267 |
+
Corresponding Source along with the object code. If the place to
|
268 |
+
copy the object code is a network server, the Corresponding Source
|
269 |
+
may be on a different server (operated by you or a third party)
|
270 |
+
that supports equivalent copying facilities, provided you maintain
|
271 |
+
clear directions next to the object code saying where to find the
|
272 |
+
Corresponding Source. Regardless of what server hosts the
|
273 |
+
Corresponding Source, you remain obligated to ensure that it is
|
274 |
+
available for as long as needed to satisfy these requirements.
|
275 |
+
|
276 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
277 |
+
you inform other peers where the object code and Corresponding
|
278 |
+
Source of the work are being offered to the general public at no
|
279 |
+
charge under subsection 6d.
|
280 |
+
|
281 |
+
A separable portion of the object code, whose source code is excluded
|
282 |
+
from the Corresponding Source as a System Library, need not be
|
283 |
+
included in conveying the object code work.
|
284 |
+
|
285 |
+
A "User Product" is either (1) a "consumer product", which means any
|
286 |
+
tangible personal property which is normally used for personal, family,
|
287 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
288 |
+
into a dwelling. In determining whether a product is a consumer product,
|
289 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
290 |
+
product received by a particular user, "normally used" refers to a
|
291 |
+
typical or common use of that class of product, regardless of the status
|
292 |
+
of the particular user or of the way in which the particular user
|
293 |
+
actually uses, or expects or is expected to use, the product. A product
|
294 |
+
is a consumer product regardless of whether the product has substantial
|
295 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
296 |
+
the only significant mode of use of the product.
|
297 |
+
|
298 |
+
"Installation Information" for a User Product means any methods,
|
299 |
+
procedures, authorization keys, or other information required to install
|
300 |
+
and execute modified versions of a covered work in that User Product from
|
301 |
+
a modified version of its Corresponding Source. The information must
|
302 |
+
suffice to ensure that the continued functioning of the modified object
|
303 |
+
code is in no case prevented or interfered with solely because
|
304 |
+
modification has been made.
|
305 |
+
|
306 |
+
If you convey an object code work under this section in, or with, or
|
307 |
+
specifically for use in, a User Product, and the conveying occurs as
|
308 |
+
part of a transaction in which the right of possession and use of the
|
309 |
+
User Product is transferred to the recipient in perpetuity or for a
|
310 |
+
fixed term (regardless of how the transaction is characterized), the
|
311 |
+
Corresponding Source conveyed under this section must be accompanied
|
312 |
+
by the Installation Information. But this requirement does not apply
|
313 |
+
if neither you nor any third party retains the ability to install
|
314 |
+
modified object code on the User Product (for example, the work has
|
315 |
+
been installed in ROM).
|
316 |
+
|
317 |
+
The requirement to provide Installation Information does not include a
|
318 |
+
requirement to continue to provide support service, warranty, or updates
|
319 |
+
for a work that has been modified or installed by the recipient, or for
|
320 |
+
the User Product in which it has been modified or installed. Access to a
|
321 |
+
network may be denied when the modification itself materially and
|
322 |
+
adversely affects the operation of the network or violates the rules and
|
323 |
+
protocols for communication across the network.
|
324 |
+
|
325 |
+
Corresponding Source conveyed, and Installation Information provided,
|
326 |
+
in accord with this section must be in a format that is publicly
|
327 |
+
documented (and with an implementation available to the public in
|
328 |
+
source code form), and must require no special password or key for
|
329 |
+
unpacking, reading or copying.
|
330 |
+
|
331 |
+
7. Additional Terms.
|
332 |
+
|
333 |
+
"Additional permissions" are terms that supplement the terms of this
|
334 |
+
License by making exceptions from one or more of its conditions.
|
335 |
+
Additional permissions that are applicable to the entire Program shall
|
336 |
+
be treated as though they were included in this License, to the extent
|
337 |
+
that they are valid under applicable law. If additional permissions
|
338 |
+
apply only to part of the Program, that part may be used separately
|
339 |
+
under those permissions, but the entire Program remains governed by
|
340 |
+
this License without regard to the additional permissions.
|
341 |
+
|
342 |
+
When you convey a copy of a covered work, you may at your option
|
343 |
+
remove any additional permissions from that copy, or from any part of
|
344 |
+
it. (Additional permissions may be written to require their own
|
345 |
+
removal in certain cases when you modify the work.) You may place
|
346 |
+
additional permissions on material, added by you to a covered work,
|
347 |
+
for which you have or can give appropriate copyright permission.
|
348 |
+
|
349 |
+
Notwithstanding any other provision of this License, for material you
|
350 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
351 |
+
that material) supplement the terms of this License with terms:
|
352 |
+
|
353 |
+
a) Disclaiming warranty or limiting liability differently from the
|
354 |
+
terms of sections 15 and 16 of this License; or
|
355 |
+
|
356 |
+
b) Requiring preservation of specified reasonable legal notices or
|
357 |
+
author attributions in that material or in the Appropriate Legal
|
358 |
+
Notices displayed by works containing it; or
|
359 |
+
|
360 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
361 |
+
requiring that modified versions of such material be marked in
|
362 |
+
reasonable ways as different from the original version; or
|
363 |
+
|
364 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
365 |
+
authors of the material; or
|
366 |
+
|
367 |
+
e) Declining to grant rights under trademark law for use of some
|
368 |
+
trade names, trademarks, or service marks; or
|
369 |
+
|
370 |
+
f) Requiring indemnification of licensors and authors of that
|
371 |
+
material by anyone who conveys the material (or modified versions of
|
372 |
+
it) with contractual assumptions of liability to the recipient, for
|
373 |
+
any liability that these contractual assumptions directly impose on
|
374 |
+
those licensors and authors.
|
375 |
+
|
376 |
+
All other non-permissive additional terms are considered "further
|
377 |
+
restrictions" within the meaning of section 10. If the Program as you
|
378 |
+
received it, or any part of it, contains a notice stating that it is
|
379 |
+
governed by this License along with a term that is a further
|
380 |
+
restriction, you may remove that term. If a license document contains
|
381 |
+
a further restriction but permits relicensing or conveying under this
|
382 |
+
License, you may add to a covered work material governed by the terms
|
383 |
+
of that license document, provided that the further restriction does
|
384 |
+
not survive such relicensing or conveying.
|
385 |
+
|
386 |
+
If you add terms to a covered work in accord with this section, you
|
387 |
+
must place, in the relevant source files, a statement of the
|
388 |
+
additional terms that apply to those files, or a notice indicating
|
389 |
+
where to find the applicable terms.
|
390 |
+
|
391 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
392 |
+
form of a separately written license, or stated as exceptions;
|
393 |
+
the above requirements apply either way.
|
394 |
+
|
395 |
+
8. Termination.
|
396 |
+
|
397 |
+
You may not propagate or modify a covered work except as expressly
|
398 |
+
provided under this License. Any attempt otherwise to propagate or
|
399 |
+
modify it is void, and will automatically terminate your rights under
|
400 |
+
this License (including any patent licenses granted under the third
|
401 |
+
paragraph of section 11).
|
402 |
+
|
403 |
+
However, if you cease all violation of this License, then your
|
404 |
+
license from a particular copyright holder is reinstated (a)
|
405 |
+
provisionally, unless and until the copyright holder explicitly and
|
406 |
+
finally terminates your license, and (b) permanently, if the copyright
|
407 |
+
holder fails to notify you of the violation by some reasonable means
|
408 |
+
prior to 60 days after the cessation.
|
409 |
+
|
410 |
+
Moreover, your license from a particular copyright holder is
|
411 |
+
reinstated permanently if the copyright holder notifies you of the
|
412 |
+
violation by some reasonable means, this is the first time you have
|
413 |
+
received notice of violation of this License (for any work) from that
|
414 |
+
copyright holder, and you cure the violation prior to 30 days after
|
415 |
+
your receipt of the notice.
|
416 |
+
|
417 |
+
Termination of your rights under this section does not terminate the
|
418 |
+
licenses of parties who have received copies or rights from you under
|
419 |
+
this License. If your rights have been terminated and not permanently
|
420 |
+
reinstated, you do not qualify to receive new licenses for the same
|
421 |
+
material under section 10.
|
422 |
+
|
423 |
+
9. Acceptance Not Required for Having Copies.
|
424 |
+
|
425 |
+
You are not required to accept this License in order to receive or
|
426 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
427 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
428 |
+
to receive a copy likewise does not require acceptance. However,
|
429 |
+
nothing other than this License grants you permission to propagate or
|
430 |
+
modify any covered work. These actions infringe copyright if you do
|
431 |
+
not accept this License. Therefore, by modifying or propagating a
|
432 |
+
covered work, you indicate your acceptance of this License to do so.
|
433 |
+
|
434 |
+
10. Automatic Licensing of Downstream Recipients.
|
435 |
+
|
436 |
+
Each time you convey a covered work, the recipient automatically
|
437 |
+
receives a license from the original licensors, to run, modify and
|
438 |
+
propagate that work, subject to this License. You are not responsible
|
439 |
+
for enforcing compliance by third parties with this License.
|
440 |
+
|
441 |
+
An "entity transaction" is a transaction transferring control of an
|
442 |
+
organization, or substantially all assets of one, or subdividing an
|
443 |
+
organization, or merging organizations. If propagation of a covered
|
444 |
+
work results from an entity transaction, each party to that
|
445 |
+
transaction who receives a copy of the work also receives whatever
|
446 |
+
licenses to the work the party's predecessor in interest had or could
|
447 |
+
give under the previous paragraph, plus a right to possession of the
|
448 |
+
Corresponding Source of the work from the predecessor in interest, if
|
449 |
+
the predecessor has it or can get it with reasonable efforts.
|
450 |
+
|
451 |
+
You may not impose any further restrictions on the exercise of the
|
452 |
+
rights granted or affirmed under this License. For example, you may
|
453 |
+
not impose a license fee, royalty, or other charge for exercise of
|
454 |
+
rights granted under this License, and you may not initiate litigation
|
455 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
456 |
+
any patent claim is infringed by making, using, selling, offering for
|
457 |
+
sale, or importing the Program or any portion of it.
|
458 |
+
|
459 |
+
11. Patents.
|
460 |
+
|
461 |
+
A "contributor" is a copyright holder who authorizes use under this
|
462 |
+
License of the Program or a work on which the Program is based. The
|
463 |
+
work thus licensed is called the contributor's "contributor version".
|
464 |
+
|
465 |
+
A contributor's "essential patent claims" are all patent claims
|
466 |
+
owned or controlled by the contributor, whether already acquired or
|
467 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
468 |
+
by this License, of making, using, or selling its contributor version,
|
469 |
+
but do not include claims that would be infringed only as a
|
470 |
+
consequence of further modification of the contributor version. For
|
471 |
+
purposes of this definition, "control" includes the right to grant
|
472 |
+
patent sublicenses in a manner consistent with the requirements of
|
473 |
+
this License.
|
474 |
+
|
475 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
476 |
+
patent license under the contributor's essential patent claims, to
|
477 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
478 |
+
propagate the contents of its contributor version.
|
479 |
+
|
480 |
+
In the following three paragraphs, a "patent license" is any express
|
481 |
+
agreement or commitment, however denominated, not to enforce a patent
|
482 |
+
(such as an express permission to practice a patent or covenant not to
|
483 |
+
sue for patent infringement). To "grant" such a patent license to a
|
484 |
+
party means to make such an agreement or commitment not to enforce a
|
485 |
+
patent against the party.
|
486 |
+
|
487 |
+
If you convey a covered work, knowingly relying on a patent license,
|
488 |
+
and the Corresponding Source of the work is not available for anyone
|
489 |
+
to copy, free of charge and under the terms of this License, through a
|
490 |
+
publicly available network server or other readily accessible means,
|
491 |
+
then you must either (1) cause the Corresponding Source to be so
|
492 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
493 |
+
patent license for this particular work, or (3) arrange, in a manner
|
494 |
+
consistent with the requirements of this License, to extend the patent
|
495 |
+
license to downstream recipients. "Knowingly relying" means you have
|
496 |
+
actual knowledge that, but for the patent license, your conveying the
|
497 |
+
covered work in a country, or your recipient's use of the covered work
|
498 |
+
in a country, would infringe one or more identifiable patents in that
|
499 |
+
country that you have reason to believe are valid.
|
500 |
+
|
501 |
+
If, pursuant to or in connection with a single transaction or
|
502 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
503 |
+
covered work, and grant a patent license to some of the parties
|
504 |
+
receiving the covered work authorizing them to use, propagate, modify
|
505 |
+
or convey a specific copy of the covered work, then the patent license
|
506 |
+
you grant is automatically extended to all recipients of the covered
|
507 |
+
work and works based on it.
|
508 |
+
|
509 |
+
A patent license is "discriminatory" if it does not include within
|
510 |
+
the scope of its coverage, prohibits the exercise of, or is
|
511 |
+
conditioned on the non-exercise of one or more of the rights that are
|
512 |
+
specifically granted under this License. You may not convey a covered
|
513 |
+
work if you are a party to an arrangement with a third party that is
|
514 |
+
in the business of distributing software, under which you make payment
|
515 |
+
to the third party based on the extent of your activity of conveying
|
516 |
+
the work, and under which the third party grants, to any of the
|
517 |
+
parties who would receive the covered work from you, a discriminatory
|
518 |
+
patent license (a) in connection with copies of the covered work
|
519 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
520 |
+
for and in connection with specific products or compilations that
|
521 |
+
contain the covered work, unless you entered into that arrangement,
|
522 |
+
or that patent license was granted, prior to 28 March 2007.
|
523 |
+
|
524 |
+
Nothing in this License shall be construed as excluding or limiting
|
525 |
+
any implied license or other defenses to infringement that may
|
526 |
+
otherwise be available to you under applicable patent law.
|
527 |
+
|
528 |
+
12. No Surrender of Others' Freedom.
|
529 |
+
|
530 |
+
If conditions are imposed on you (whether by court order, agreement or
|
531 |
+
otherwise) that contradict the conditions of this License, they do not
|
532 |
+
excuse you from the conditions of this License. If you cannot convey a
|
533 |
+
covered work so as to satisfy simultaneously your obligations under this
|
534 |
+
License and any other pertinent obligations, then as a consequence you may
|
535 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
536 |
+
to collect a royalty for further conveying from those to whom you convey
|
537 |
+
the Program, the only way you could satisfy both those terms and this
|
538 |
+
License would be to refrain entirely from conveying the Program.
|
539 |
+
|
540 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
541 |
+
|
542 |
+
Notwithstanding any other provision of this License, if you modify the
|
543 |
+
Program, your modified version must prominently offer all users
|
544 |
+
interacting with it remotely through a computer network (if your version
|
545 |
+
supports such interaction) an opportunity to receive the Corresponding
|
546 |
+
Source of your version by providing access to the Corresponding Source
|
547 |
+
from a network server at no charge, through some standard or customary
|
548 |
+
means of facilitating copying of software. This Corresponding Source
|
549 |
+
shall include the Corresponding Source for any work covered by version 3
|
550 |
+
of the GNU General Public License that is incorporated pursuant to the
|
551 |
+
following paragraph.
|
552 |
+
|
553 |
+
Notwithstanding any other provision of this License, you have
|
554 |
+
permission to link or combine any covered work with a work licensed
|
555 |
+
under version 3 of the GNU General Public License into a single
|
556 |
+
combined work, and to convey the resulting work. The terms of this
|
557 |
+
License will continue to apply to the part which is the covered work,
|
558 |
+
but the work with which it is combined will remain governed by version
|
559 |
+
3 of the GNU General Public License.
|
560 |
+
|
561 |
+
14. Revised Versions of this License.
|
562 |
+
|
563 |
+
The Free Software Foundation may publish revised and/or new versions of
|
564 |
+
the GNU Affero General Public License from time to time. Such new versions
|
565 |
+
will be similar in spirit to the present version, but may differ in detail to
|
566 |
+
address new problems or concerns.
|
567 |
+
|
568 |
+
Each version is given a distinguishing version number. If the
|
569 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
570 |
+
Public License "or any later version" applies to it, you have the
|
571 |
+
option of following the terms and conditions either of that numbered
|
572 |
+
version or of any later version published by the Free Software
|
573 |
+
Foundation. If the Program does not specify a version number of the
|
574 |
+
GNU Affero General Public License, you may choose any version ever published
|
575 |
+
by the Free Software Foundation.
|
576 |
+
|
577 |
+
If the Program specifies that a proxy can decide which future
|
578 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
579 |
+
public statement of acceptance of a version permanently authorizes you
|
580 |
+
to choose that version for the Program.
|
581 |
+
|
582 |
+
Later license versions may give you additional or different
|
583 |
+
permissions. However, no additional obligations are imposed on any
|
584 |
+
author or copyright holder as a result of your choosing to follow a
|
585 |
+
later version.
|
586 |
+
|
587 |
+
15. Disclaimer of Warranty.
|
588 |
+
|
589 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
590 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
591 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
592 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
593 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
594 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
595 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
596 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
597 |
+
|
598 |
+
16. Limitation of Liability.
|
599 |
+
|
600 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
601 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
602 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
603 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
604 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
605 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
606 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
607 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
608 |
+
SUCH DAMAGES.
|
609 |
+
|
610 |
+
17. Interpretation of Sections 15 and 16.
|
611 |
+
|
612 |
+
If the disclaimer of warranty and limitation of liability provided
|
613 |
+
above cannot be given local legal effect according to their terms,
|
614 |
+
reviewing courts shall apply local law that most closely approximates
|
615 |
+
an absolute waiver of all civil liability in connection with the
|
616 |
+
Program, unless a warranty or assumption of liability accompanies a
|
617 |
+
copy of the Program in return for a fee.
|
618 |
+
|
619 |
+
END OF TERMS AND CONDITIONS
|
620 |
+
|
621 |
+
How to Apply These Terms to Your New Programs
|
622 |
+
|
623 |
+
If you develop a new program, and you want it to be of the greatest
|
624 |
+
possible use to the public, the best way to achieve this is to make it
|
625 |
+
free software which everyone can redistribute and change under these terms.
|
626 |
+
|
627 |
+
To do so, attach the following notices to the program. It is safest
|
628 |
+
to attach them to the start of each source file to most effectively
|
629 |
+
state the exclusion of warranty; and each file should have at least
|
630 |
+
the "copyright" line and a pointer to where the full notice is found.
|
631 |
+
|
632 |
+
<one line to give the program's name and a brief idea of what it does.>
|
633 |
+
Copyright (C) <year> <name of author>
|
634 |
+
|
635 |
+
This program is free software: you can redistribute it and/or modify
|
636 |
+
it under the terms of the GNU Affero General Public License as published
|
637 |
+
by the Free Software Foundation, either version 3 of the License, or
|
638 |
+
(at your option) any later version.
|
639 |
+
|
640 |
+
This program is distributed in the hope that it will be useful,
|
641 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
642 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
643 |
+
GNU Affero General Public License for more details.
|
644 |
+
|
645 |
+
You should have received a copy of the GNU Affero General Public License
|
646 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
647 |
+
|
648 |
+
Also add information on how to contact you by electronic and paper mail.
|
649 |
+
|
650 |
+
If your software can interact with users remotely through a computer
|
651 |
+
network, you should also make sure that it provides a way for users to
|
652 |
+
get its source. For example, if your program is a web application, its
|
653 |
+
interface could display a "Source" link that leads users to an archive
|
654 |
+
of the code. There are many ways you could offer source, and different
|
655 |
+
solutions will be better for different programs; see section 13 for the
|
656 |
+
specific requirements.
|
657 |
+
|
658 |
+
You should also get your employer (if you work as a programmer) or school,
|
659 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
660 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
661 |
+
<https://www.gnu.org/licenses/>.
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
9 |
-
|
10 |
-
|
|
|
1 |
---
|
2 |
+
title: Bert VITS2 Docker Template
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: red
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
9 |
+
# Bert-VITS2-Docker-template
|
10 |
+
此儲存庫提供一個無須上傳一堆Bert模型,便可以快速部署HuggingFace Spaces的方法。僅需修改config.yml以及上傳Bert-VITS的模型本體即可,大大縮短LFS的上傳時間。(順便提供 [Bert-VITS2-Colab](https://github.com/ADT109119/Bert-VITS2-Colab) 一鍵部署到 HF 的模板)
|
app.py
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: E402
|
2 |
+
import os
|
3 |
+
import logging
|
4 |
+
import re_matching
|
5 |
+
from tools.sentence import split_by_language
|
6 |
+
|
7 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
8 |
+
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
9 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
10 |
+
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
11 |
+
|
12 |
+
logging.basicConfig(
|
13 |
+
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
|
14 |
+
)
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import ssl
|
20 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
21 |
+
import nltk
|
22 |
+
nltk.download('cmudict')
|
23 |
+
import utils
|
24 |
+
from infer import infer, latest_version, get_net_g, infer_multilang
|
25 |
+
import gradio as gr
|
26 |
+
import webbrowser
|
27 |
+
import numpy as np
|
28 |
+
from config import config
|
29 |
+
from tools.translate import translate
|
30 |
+
import librosa
|
31 |
+
|
32 |
+
net_g = None
|
33 |
+
|
34 |
+
device = config.webui_config.device
|
35 |
+
if device == "mps":
|
36 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
37 |
+
|
38 |
+
|
39 |
+
def generate_audio(
|
40 |
+
slices,
|
41 |
+
sdp_ratio,
|
42 |
+
noise_scale,
|
43 |
+
noise_scale_w,
|
44 |
+
length_scale,
|
45 |
+
speaker,
|
46 |
+
language,
|
47 |
+
reference_audio,
|
48 |
+
emotion,
|
49 |
+
style_text,
|
50 |
+
style_weight,
|
51 |
+
skip_start=False,
|
52 |
+
skip_end=False,
|
53 |
+
):
|
54 |
+
audio_list = []
|
55 |
+
# silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
|
56 |
+
with torch.no_grad():
|
57 |
+
for idx, piece in enumerate(slices):
|
58 |
+
skip_start = idx != 0
|
59 |
+
skip_end = idx != len(slices) - 1
|
60 |
+
audio = infer(
|
61 |
+
piece,
|
62 |
+
reference_audio=reference_audio,
|
63 |
+
emotion=emotion,
|
64 |
+
sdp_ratio=sdp_ratio,
|
65 |
+
noise_scale=noise_scale,
|
66 |
+
noise_scale_w=noise_scale_w,
|
67 |
+
length_scale=length_scale,
|
68 |
+
sid=speaker,
|
69 |
+
language=language,
|
70 |
+
hps=hps,
|
71 |
+
net_g=net_g,
|
72 |
+
device=device,
|
73 |
+
skip_start=skip_start,
|
74 |
+
skip_end=skip_end,
|
75 |
+
style_text=style_text,
|
76 |
+
style_weight=style_weight,
|
77 |
+
)
|
78 |
+
audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
|
79 |
+
audio_list.append(audio16bit)
|
80 |
+
return audio_list
|
81 |
+
|
82 |
+
|
83 |
+
def generate_audio_multilang(
|
84 |
+
slices,
|
85 |
+
sdp_ratio,
|
86 |
+
noise_scale,
|
87 |
+
noise_scale_w,
|
88 |
+
length_scale,
|
89 |
+
speaker,
|
90 |
+
language,
|
91 |
+
reference_audio,
|
92 |
+
emotion,
|
93 |
+
skip_start=False,
|
94 |
+
skip_end=False,
|
95 |
+
):
|
96 |
+
audio_list = []
|
97 |
+
# silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
|
98 |
+
with torch.no_grad():
|
99 |
+
for idx, piece in enumerate(slices):
|
100 |
+
skip_start = idx != 0
|
101 |
+
skip_end = idx != len(slices) - 1
|
102 |
+
audio = infer_multilang(
|
103 |
+
piece,
|
104 |
+
reference_audio=reference_audio,
|
105 |
+
emotion=emotion,
|
106 |
+
sdp_ratio=sdp_ratio,
|
107 |
+
noise_scale=noise_scale,
|
108 |
+
noise_scale_w=noise_scale_w,
|
109 |
+
length_scale=length_scale,
|
110 |
+
sid=speaker,
|
111 |
+
language=language[idx],
|
112 |
+
hps=hps,
|
113 |
+
net_g=net_g,
|
114 |
+
device=device,
|
115 |
+
skip_start=skip_start,
|
116 |
+
skip_end=skip_end,
|
117 |
+
)
|
118 |
+
audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
|
119 |
+
audio_list.append(audio16bit)
|
120 |
+
return audio_list
|
121 |
+
|
122 |
+
|
123 |
+
def tts_split(
|
124 |
+
text: str,
|
125 |
+
speaker,
|
126 |
+
sdp_ratio,
|
127 |
+
noise_scale,
|
128 |
+
noise_scale_w,
|
129 |
+
length_scale,
|
130 |
+
language,
|
131 |
+
cut_by_sent,
|
132 |
+
interval_between_para,
|
133 |
+
interval_between_sent,
|
134 |
+
reference_audio,
|
135 |
+
emotion,
|
136 |
+
style_text,
|
137 |
+
style_weight,
|
138 |
+
):
|
139 |
+
while text.find("\n\n") != -1:
|
140 |
+
text = text.replace("\n\n", "\n")
|
141 |
+
text = text.replace("|", "")
|
142 |
+
para_list = re_matching.cut_para(text)
|
143 |
+
para_list = [p for p in para_list if p != ""]
|
144 |
+
audio_list = []
|
145 |
+
for p in para_list:
|
146 |
+
if not cut_by_sent:
|
147 |
+
audio_list += process_text(
|
148 |
+
p,
|
149 |
+
speaker,
|
150 |
+
sdp_ratio,
|
151 |
+
noise_scale,
|
152 |
+
noise_scale_w,
|
153 |
+
length_scale,
|
154 |
+
language,
|
155 |
+
reference_audio,
|
156 |
+
emotion,
|
157 |
+
style_text,
|
158 |
+
style_weight,
|
159 |
+
)
|
160 |
+
silence = np.zeros((int)(44100 * interval_between_para), dtype=np.int16)
|
161 |
+
audio_list.append(silence)
|
162 |
+
else:
|
163 |
+
audio_list_sent = []
|
164 |
+
sent_list = re_matching.cut_sent(p)
|
165 |
+
sent_list = [s for s in sent_list if s != ""]
|
166 |
+
for s in sent_list:
|
167 |
+
audio_list_sent += process_text(
|
168 |
+
s,
|
169 |
+
speaker,
|
170 |
+
sdp_ratio,
|
171 |
+
noise_scale,
|
172 |
+
noise_scale_w,
|
173 |
+
length_scale,
|
174 |
+
language,
|
175 |
+
reference_audio,
|
176 |
+
emotion,
|
177 |
+
style_text,
|
178 |
+
style_weight,
|
179 |
+
)
|
180 |
+
silence = np.zeros((int)(44100 * interval_between_sent))
|
181 |
+
audio_list_sent.append(silence)
|
182 |
+
if (interval_between_para - interval_between_sent) > 0:
|
183 |
+
silence = np.zeros(
|
184 |
+
(int)(44100 * (interval_between_para - interval_between_sent))
|
185 |
+
)
|
186 |
+
audio_list_sent.append(silence)
|
187 |
+
audio16bit = gr.processing_utils.convert_to_16_bit_wav(
|
188 |
+
np.concatenate(audio_list_sent)
|
189 |
+
) # 对完整句子做音量归一
|
190 |
+
audio_list.append(audio16bit)
|
191 |
+
audio_concat = np.concatenate(audio_list)
|
192 |
+
return ("Success", (hps.data.sampling_rate, audio_concat))
|
193 |
+
|
194 |
+
|
195 |
+
def process_mix(slice):
|
196 |
+
_speaker = slice.pop()
|
197 |
+
_text, _lang = [], []
|
198 |
+
for lang, content in slice:
|
199 |
+
content = content.split("|")
|
200 |
+
content = [part for part in content if part != ""]
|
201 |
+
if len(content) == 0:
|
202 |
+
continue
|
203 |
+
if len(_text) == 0:
|
204 |
+
_text = [[part] for part in content]
|
205 |
+
_lang = [[lang] for part in content]
|
206 |
+
else:
|
207 |
+
_text[-1].append(content[0])
|
208 |
+
_lang[-1].append(lang)
|
209 |
+
if len(content) > 1:
|
210 |
+
_text += [[part] for part in content[1:]]
|
211 |
+
_lang += [[lang] for part in content[1:]]
|
212 |
+
return _text, _lang, _speaker
|
213 |
+
|
214 |
+
|
215 |
+
def process_auto(text):
|
216 |
+
_text, _lang = [], []
|
217 |
+
for slice in text.split("|"):
|
218 |
+
if slice == "":
|
219 |
+
continue
|
220 |
+
temp_text, temp_lang = [], []
|
221 |
+
sentences_list = split_by_language(slice, target_languages=["zh", "ja", "en"])
|
222 |
+
for sentence, lang in sentences_list:
|
223 |
+
if sentence == "":
|
224 |
+
continue
|
225 |
+
temp_text.append(sentence)
|
226 |
+
temp_lang.append(lang.upper())
|
227 |
+
_text.append(temp_text)
|
228 |
+
_lang.append(temp_lang)
|
229 |
+
return _text, _lang
|
230 |
+
|
231 |
+
|
232 |
+
def process_text(
|
233 |
+
text: str,
|
234 |
+
speaker,
|
235 |
+
sdp_ratio,
|
236 |
+
noise_scale,
|
237 |
+
noise_scale_w,
|
238 |
+
length_scale,
|
239 |
+
language,
|
240 |
+
reference_audio,
|
241 |
+
emotion,
|
242 |
+
style_text=None,
|
243 |
+
style_weight=0,
|
244 |
+
):
|
245 |
+
audio_list = []
|
246 |
+
if language == "mix":
|
247 |
+
bool_valid, str_valid = re_matching.validate_text(text)
|
248 |
+
if not bool_valid:
|
249 |
+
return str_valid, (
|
250 |
+
hps.data.sampling_rate,
|
251 |
+
np.concatenate([np.zeros(hps.data.sampling_rate // 2)]),
|
252 |
+
)
|
253 |
+
for slice in re_matching.text_matching(text):
|
254 |
+
_text, _lang, _speaker = process_mix(slice)
|
255 |
+
if _speaker is None:
|
256 |
+
continue
|
257 |
+
print(f"Text: {_text}\nLang: {_lang}")
|
258 |
+
audio_list.extend(
|
259 |
+
generate_audio_multilang(
|
260 |
+
_text,
|
261 |
+
sdp_ratio,
|
262 |
+
noise_scale,
|
263 |
+
noise_scale_w,
|
264 |
+
length_scale,
|
265 |
+
_speaker,
|
266 |
+
_lang,
|
267 |
+
reference_audio,
|
268 |
+
emotion,
|
269 |
+
)
|
270 |
+
)
|
271 |
+
elif language.lower() == "auto":
|
272 |
+
_text, _lang = process_auto(text)
|
273 |
+
print(f"Text: {_text}\nLang: {_lang}")
|
274 |
+
_lang = [[lang.replace("JA", "JP") for lang in lang_list] for lang_list in _lang]
|
275 |
+
audio_list.extend(
|
276 |
+
generate_audio_multilang(
|
277 |
+
_text,
|
278 |
+
sdp_ratio,
|
279 |
+
noise_scale,
|
280 |
+
noise_scale_w,
|
281 |
+
length_scale,
|
282 |
+
speaker,
|
283 |
+
_lang,
|
284 |
+
reference_audio,
|
285 |
+
emotion,
|
286 |
+
)
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
audio_list.extend(
|
290 |
+
generate_audio(
|
291 |
+
text.split("|"),
|
292 |
+
sdp_ratio,
|
293 |
+
noise_scale,
|
294 |
+
noise_scale_w,
|
295 |
+
length_scale,
|
296 |
+
speaker,
|
297 |
+
language,
|
298 |
+
reference_audio,
|
299 |
+
emotion,
|
300 |
+
style_text,
|
301 |
+
style_weight,
|
302 |
+
)
|
303 |
+
)
|
304 |
+
return audio_list
|
305 |
+
|
306 |
+
|
307 |
+
def tts_fn(
|
308 |
+
text: str,
|
309 |
+
speaker,
|
310 |
+
sdp_ratio,
|
311 |
+
noise_scale,
|
312 |
+
noise_scale_w,
|
313 |
+
length_scale,
|
314 |
+
language,
|
315 |
+
reference_audio,
|
316 |
+
emotion,
|
317 |
+
prompt_mode,
|
318 |
+
style_text=None,
|
319 |
+
style_weight=0,
|
320 |
+
):
|
321 |
+
if style_text == "":
|
322 |
+
style_text = None
|
323 |
+
if prompt_mode == "Audio prompt":
|
324 |
+
if reference_audio == None:
|
325 |
+
return ("Invalid audio prompt", None)
|
326 |
+
else:
|
327 |
+
reference_audio = load_audio(reference_audio)[1]
|
328 |
+
else:
|
329 |
+
reference_audio = None
|
330 |
+
|
331 |
+
audio_list = process_text(
|
332 |
+
text,
|
333 |
+
speaker,
|
334 |
+
sdp_ratio,
|
335 |
+
noise_scale,
|
336 |
+
noise_scale_w,
|
337 |
+
length_scale,
|
338 |
+
language,
|
339 |
+
reference_audio,
|
340 |
+
emotion,
|
341 |
+
style_text,
|
342 |
+
style_weight,
|
343 |
+
)
|
344 |
+
|
345 |
+
audio_concat = np.concatenate(audio_list)
|
346 |
+
return "Success", (hps.data.sampling_rate, audio_concat)
|
347 |
+
|
348 |
+
|
349 |
+
def format_utils(text, speaker):
|
350 |
+
_text, _lang = process_auto(text)
|
351 |
+
res = f"[{speaker}]"
|
352 |
+
for lang_s, content_s in zip(_lang, _text):
|
353 |
+
for lang, content in zip(lang_s, content_s):
|
354 |
+
res += f"<{lang.lower()}>{content}"
|
355 |
+
res += "|"
|
356 |
+
return "mix", res[:-1]
|
357 |
+
|
358 |
+
|
359 |
+
def load_audio(path):
|
360 |
+
audio, sr = librosa.load(path, 48000)
|
361 |
+
# audio = librosa.resample(audio, 44100, 48000)
|
362 |
+
return sr, audio
|
363 |
+
|
364 |
+
|
365 |
+
def gr_util(item):
|
366 |
+
if item == "Text prompt":
|
367 |
+
return {"visible": True, "__type__": "update"}, {
|
368 |
+
"visible": False,
|
369 |
+
"__type__": "update",
|
370 |
+
}
|
371 |
+
else:
|
372 |
+
return {"visible": False, "__type__": "update"}, {
|
373 |
+
"visible": True,
|
374 |
+
"__type__": "update",
|
375 |
+
}
|
376 |
+
|
377 |
+
import json
|
378 |
+
|
379 |
+
def load_json(file_path):
|
380 |
+
with open(file_path, 'r', encoding="utf-8") as file:
|
381 |
+
data = json.load(file)
|
382 |
+
return data
|
383 |
+
|
384 |
+
if __name__ == "__main__":
|
385 |
+
if config.webui_config.debug:
|
386 |
+
logger.info("Enable DEBUG-LEVEL log")
|
387 |
+
logging.basicConfig(level=logging.DEBUG)
|
388 |
+
hps = utils.get_hparams_from_file(config.webui_config.config_path)
|
389 |
+
# 若config.json中未指定版本则默认为最新版本
|
390 |
+
version = hps.version if hasattr(hps, "version") else latest_version
|
391 |
+
net_g = get_net_g(
|
392 |
+
model_path=config.webui_config.model, version=version, device=device, hps=hps
|
393 |
+
)
|
394 |
+
speaker_ids = hps.data.spk2id
|
395 |
+
speakers = list(speaker_ids.keys())
|
396 |
+
languages = ["ZH", "JP", "EN", "auto", "mix"]
|
397 |
+
|
398 |
+
author_and_voice_data = load_json('author_and_voice_data.json')
|
399 |
+
|
400 |
+
with gr.Blocks() as app:
|
401 |
+
with gr.Row():
|
402 |
+
with gr.Column():
|
403 |
+
gr.Markdown(value=f"""
|
404 |
+
作者:{author_and_voice_data["author"]}\n
|
405 |
+
聲音歸屬:{author_and_voice_data["voice"]}\n
|
406 |
+
Bert-VITS2項目:https://github.com/fishaudio/Bert-VITS2\n
|
407 |
+
Bert-VITS2-Colab:https://github.com/ADT109119/Bert-VITS2-Colab\n
|
408 |
+
使用本模型請嚴格遵守法規! \n
|
409 |
+
發布二創作品請標註本計畫作者及連結、作品使用Bert-VITS2 AI生成! \n
|
410 |
+
【提示】手機端容易誤觸調節,請刷新恢復預設! 每次產生的結果都不一樣,效果不好請嘗試多次產生與調節,選擇最佳結果! \n """)
|
411 |
+
text = gr.TextArea(
|
412 |
+
label="輸入文本內容",
|
413 |
+
placeholder="""
|
414 |
+
推薦不同語言分開推理,因為無法連貫且可能影響最終效果!
|
415 |
+
若選擇語言為\'mix\',必須依照格式輸入,否則報錯:
|
416 |
+
格式舉例(zh是中文,jp是日語,en是英語;不區分大小寫):
|
417 |
+
[說話者]<zh>你好 <jp>こんにちは <en>Hello
|
418 |
+
另外,所有的語言選項都可以用'|'分割長段實現分句生成。
|
419 |
+
""", )
|
420 |
+
speaker = gr.Dropdown(
|
421 |
+
choices=speakers, value=speakers[0], label="Speaker"
|
422 |
+
)
|
423 |
+
_ = gr.Markdown(
|
424 |
+
value="提示模式(Prompt mode):可選文字提示或音訊提示,用於產生文字或音訊指定風格的聲音。\n",
|
425 |
+
visible=False,
|
426 |
+
)
|
427 |
+
prompt_mode = gr.Radio(
|
428 |
+
["Text prompt", "Audio prompt"],
|
429 |
+
label="Prompt Mode",
|
430 |
+
value="Text prompt",
|
431 |
+
visible=False,
|
432 |
+
)
|
433 |
+
text_prompt = gr.Textbox(
|
434 |
+
label="Text prompt",
|
435 |
+
placeholder="用文字描述生成風格。如:Happy",
|
436 |
+
value="Happy",
|
437 |
+
visible=False,
|
438 |
+
)
|
439 |
+
audio_prompt = gr.Audio(
|
440 |
+
label="Audio prompt", type="filepath", visible=False
|
441 |
+
)
|
442 |
+
sdp_ratio = gr.Slider(
|
443 |
+
minimum=0, maximum=1, value=0.5, step=0.01, label="SDP Ratio"
|
444 |
+
)
|
445 |
+
noise_scale = gr.Slider(
|
446 |
+
minimum=0.1, maximum=2, value=0.5, step=0.01, label="Noise"
|
447 |
+
)
|
448 |
+
noise_scale_w = gr.Slider(
|
449 |
+
minimum=0.1, maximum=2, value=0.9, step=0.01, label="Noise_W"
|
450 |
+
)
|
451 |
+
length_scale = gr.Slider(
|
452 |
+
minimum=0.1, maximum=2, value=1.0, step=0.01, label="Length"
|
453 |
+
)
|
454 |
+
language = gr.Dropdown(
|
455 |
+
choices=languages, value=languages[0], label="Language"
|
456 |
+
)
|
457 |
+
btn = gr.Button("點擊生成", variant="primary")
|
458 |
+
with gr.Column():
|
459 |
+
with gr.Accordion("融合文本語義", open=False):
|
460 |
+
gr.Markdown(
|
461 |
+
value="使用輔助文本的語意來輔助生成對話(語言保持與主文本相同)\n\n"
|
462 |
+
"**注意**:不要使用**指令式文字**(如:開心),要使用**帶有強烈情感的文本**(如���我好快樂!!!)\n\n"
|
463 |
+
"效果較不明確,留空即為不使用該功能"
|
464 |
+
)
|
465 |
+
style_text = gr.Textbox(label="輔助文本")
|
466 |
+
style_weight = gr.Slider(
|
467 |
+
minimum=0,
|
468 |
+
maximum=1,
|
469 |
+
value=0.7,
|
470 |
+
step=0.1,
|
471 |
+
label="Weight",
|
472 |
+
info="主文本和輔助文本的bert混合比率,0表示僅主文本,1表示僅輔助文本",
|
473 |
+
)
|
474 |
+
with gr.Row():
|
475 |
+
with gr.Column():
|
476 |
+
interval_between_sent = gr.Slider(
|
477 |
+
minimum=0,
|
478 |
+
maximum=5,
|
479 |
+
value=0.2,
|
480 |
+
step=0.1,
|
481 |
+
label="句間停頓(秒),勾選按句切分才生效",
|
482 |
+
)
|
483 |
+
interval_between_para = gr.Slider(
|
484 |
+
minimum=0,
|
485 |
+
maximum=10,
|
486 |
+
value=1,
|
487 |
+
step=0.1,
|
488 |
+
label="段間停頓(秒),需要大於句間停頓才有效",
|
489 |
+
)
|
490 |
+
opt_cut_by_sent = gr.Checkbox(
|
491 |
+
label="按句切分 在按段落切分的基礎上再按句子切分文本"
|
492 |
+
)
|
493 |
+
slicer = gr.Button("切分生成", variant="primary")
|
494 |
+
text_output = gr.Textbox(label="狀態訊息")
|
495 |
+
audio_output = gr.Audio(label="輸出音頻")
|
496 |
+
# explain_image = gr.Image(
|
497 |
+
# label="参数解释信息",
|
498 |
+
# show_label=True,
|
499 |
+
# show_share_button=False,
|
500 |
+
# show_download_button=False,
|
501 |
+
# value=os.path.abspath("./img/参数说明.png"),
|
502 |
+
# )
|
503 |
+
btn.click(
|
504 |
+
tts_fn,
|
505 |
+
inputs=[
|
506 |
+
text,
|
507 |
+
speaker,
|
508 |
+
sdp_ratio,
|
509 |
+
noise_scale,
|
510 |
+
noise_scale_w,
|
511 |
+
length_scale,
|
512 |
+
language,
|
513 |
+
audio_prompt,
|
514 |
+
text_prompt,
|
515 |
+
prompt_mode,
|
516 |
+
style_text,
|
517 |
+
style_weight,
|
518 |
+
],
|
519 |
+
outputs=[text_output, audio_output],
|
520 |
+
api_name="api"
|
521 |
+
)
|
522 |
+
slicer.click(
|
523 |
+
tts_split,
|
524 |
+
inputs=[
|
525 |
+
text,
|
526 |
+
speaker,
|
527 |
+
sdp_ratio,
|
528 |
+
noise_scale,
|
529 |
+
noise_scale_w,
|
530 |
+
length_scale,
|
531 |
+
language,
|
532 |
+
opt_cut_by_sent,
|
533 |
+
interval_between_para,
|
534 |
+
interval_between_sent,
|
535 |
+
audio_prompt,
|
536 |
+
text_prompt,
|
537 |
+
style_text,
|
538 |
+
style_weight,
|
539 |
+
],
|
540 |
+
outputs=[text_output, audio_output],
|
541 |
+
)
|
542 |
+
|
543 |
+
prompt_mode.change(
|
544 |
+
lambda x: gr_util(x),
|
545 |
+
inputs=[prompt_mode],
|
546 |
+
outputs=[text_prompt, audio_prompt],
|
547 |
+
)
|
548 |
+
|
549 |
+
audio_prompt.upload(
|
550 |
+
lambda x: load_audio(x),
|
551 |
+
inputs=[audio_prompt],
|
552 |
+
outputs=[audio_prompt],
|
553 |
+
)
|
554 |
+
|
555 |
+
app.launch(show_error=True)
|
attentions.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class LayerNorm(nn.Module):
|
13 |
+
def __init__(self, channels, eps=1e-5):
|
14 |
+
super().__init__()
|
15 |
+
self.channels = channels
|
16 |
+
self.eps = eps
|
17 |
+
|
18 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
19 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = x.transpose(1, -1)
|
23 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
24 |
+
return x.transpose(1, -1)
|
25 |
+
|
26 |
+
|
27 |
+
@torch.jit.script
|
28 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
29 |
+
n_channels_int = n_channels[0]
|
30 |
+
in_act = input_a + input_b
|
31 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
32 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
33 |
+
acts = t_act * s_act
|
34 |
+
return acts
|
35 |
+
|
36 |
+
|
37 |
+
class Encoder(nn.Module):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
hidden_channels,
|
41 |
+
filter_channels,
|
42 |
+
n_heads,
|
43 |
+
n_layers,
|
44 |
+
kernel_size=1,
|
45 |
+
p_dropout=0.0,
|
46 |
+
window_size=4,
|
47 |
+
isflow=True,
|
48 |
+
**kwargs
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.hidden_channels = hidden_channels
|
52 |
+
self.filter_channels = filter_channels
|
53 |
+
self.n_heads = n_heads
|
54 |
+
self.n_layers = n_layers
|
55 |
+
self.kernel_size = kernel_size
|
56 |
+
self.p_dropout = p_dropout
|
57 |
+
self.window_size = window_size
|
58 |
+
# if isflow:
|
59 |
+
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
|
60 |
+
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
61 |
+
# self.cond_layer = weight_norm(cond_layer, name='weight')
|
62 |
+
# self.gin_channels = 256
|
63 |
+
self.cond_layer_idx = self.n_layers
|
64 |
+
if "gin_channels" in kwargs:
|
65 |
+
self.gin_channels = kwargs["gin_channels"]
|
66 |
+
if self.gin_channels != 0:
|
67 |
+
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
68 |
+
# vits2 says 3rd block, so idx is 2 by default
|
69 |
+
self.cond_layer_idx = (
|
70 |
+
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
71 |
+
)
|
72 |
+
logging.debug(self.gin_channels, self.cond_layer_idx)
|
73 |
+
assert (
|
74 |
+
self.cond_layer_idx < self.n_layers
|
75 |
+
), "cond_layer_idx should be less than n_layers"
|
76 |
+
self.drop = nn.Dropout(p_dropout)
|
77 |
+
self.attn_layers = nn.ModuleList()
|
78 |
+
self.norm_layers_1 = nn.ModuleList()
|
79 |
+
self.ffn_layers = nn.ModuleList()
|
80 |
+
self.norm_layers_2 = nn.ModuleList()
|
81 |
+
for i in range(self.n_layers):
|
82 |
+
self.attn_layers.append(
|
83 |
+
MultiHeadAttention(
|
84 |
+
hidden_channels,
|
85 |
+
hidden_channels,
|
86 |
+
n_heads,
|
87 |
+
p_dropout=p_dropout,
|
88 |
+
window_size=window_size,
|
89 |
+
)
|
90 |
+
)
|
91 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
92 |
+
self.ffn_layers.append(
|
93 |
+
FFN(
|
94 |
+
hidden_channels,
|
95 |
+
hidden_channels,
|
96 |
+
filter_channels,
|
97 |
+
kernel_size,
|
98 |
+
p_dropout=p_dropout,
|
99 |
+
)
|
100 |
+
)
|
101 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
102 |
+
|
103 |
+
def forward(self, x, x_mask, g=None):
|
104 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
105 |
+
x = x * x_mask
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
if i == self.cond_layer_idx and g is not None:
|
108 |
+
g = self.spk_emb_linear(g.transpose(1, 2))
|
109 |
+
g = g.transpose(1, 2)
|
110 |
+
x = x + g
|
111 |
+
x = x * x_mask
|
112 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
113 |
+
y = self.drop(y)
|
114 |
+
x = self.norm_layers_1[i](x + y)
|
115 |
+
|
116 |
+
y = self.ffn_layers[i](x, x_mask)
|
117 |
+
y = self.drop(y)
|
118 |
+
x = self.norm_layers_2[i](x + y)
|
119 |
+
x = x * x_mask
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class Decoder(nn.Module):
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
hidden_channels,
|
127 |
+
filter_channels,
|
128 |
+
n_heads,
|
129 |
+
n_layers,
|
130 |
+
kernel_size=1,
|
131 |
+
p_dropout=0.0,
|
132 |
+
proximal_bias=False,
|
133 |
+
proximal_init=True,
|
134 |
+
**kwargs
|
135 |
+
):
|
136 |
+
super().__init__()
|
137 |
+
self.hidden_channels = hidden_channels
|
138 |
+
self.filter_channels = filter_channels
|
139 |
+
self.n_heads = n_heads
|
140 |
+
self.n_layers = n_layers
|
141 |
+
self.kernel_size = kernel_size
|
142 |
+
self.p_dropout = p_dropout
|
143 |
+
self.proximal_bias = proximal_bias
|
144 |
+
self.proximal_init = proximal_init
|
145 |
+
|
146 |
+
self.drop = nn.Dropout(p_dropout)
|
147 |
+
self.self_attn_layers = nn.ModuleList()
|
148 |
+
self.norm_layers_0 = nn.ModuleList()
|
149 |
+
self.encdec_attn_layers = nn.ModuleList()
|
150 |
+
self.norm_layers_1 = nn.ModuleList()
|
151 |
+
self.ffn_layers = nn.ModuleList()
|
152 |
+
self.norm_layers_2 = nn.ModuleList()
|
153 |
+
for i in range(self.n_layers):
|
154 |
+
self.self_attn_layers.append(
|
155 |
+
MultiHeadAttention(
|
156 |
+
hidden_channels,
|
157 |
+
hidden_channels,
|
158 |
+
n_heads,
|
159 |
+
p_dropout=p_dropout,
|
160 |
+
proximal_bias=proximal_bias,
|
161 |
+
proximal_init=proximal_init,
|
162 |
+
)
|
163 |
+
)
|
164 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
165 |
+
self.encdec_attn_layers.append(
|
166 |
+
MultiHeadAttention(
|
167 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
168 |
+
)
|
169 |
+
)
|
170 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
171 |
+
self.ffn_layers.append(
|
172 |
+
FFN(
|
173 |
+
hidden_channels,
|
174 |
+
hidden_channels,
|
175 |
+
filter_channels,
|
176 |
+
kernel_size,
|
177 |
+
p_dropout=p_dropout,
|
178 |
+
causal=True,
|
179 |
+
)
|
180 |
+
)
|
181 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
182 |
+
|
183 |
+
def forward(self, x, x_mask, h, h_mask):
|
184 |
+
"""
|
185 |
+
x: decoder input
|
186 |
+
h: encoder output
|
187 |
+
"""
|
188 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
189 |
+
device=x.device, dtype=x.dtype
|
190 |
+
)
|
191 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
192 |
+
x = x * x_mask
|
193 |
+
for i in range(self.n_layers):
|
194 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
195 |
+
y = self.drop(y)
|
196 |
+
x = self.norm_layers_0[i](x + y)
|
197 |
+
|
198 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
199 |
+
y = self.drop(y)
|
200 |
+
x = self.norm_layers_1[i](x + y)
|
201 |
+
|
202 |
+
y = self.ffn_layers[i](x, x_mask)
|
203 |
+
y = self.drop(y)
|
204 |
+
x = self.norm_layers_2[i](x + y)
|
205 |
+
x = x * x_mask
|
206 |
+
return x
|
207 |
+
|
208 |
+
|
209 |
+
class MultiHeadAttention(nn.Module):
|
210 |
+
def __init__(
|
211 |
+
self,
|
212 |
+
channels,
|
213 |
+
out_channels,
|
214 |
+
n_heads,
|
215 |
+
p_dropout=0.0,
|
216 |
+
window_size=None,
|
217 |
+
heads_share=True,
|
218 |
+
block_length=None,
|
219 |
+
proximal_bias=False,
|
220 |
+
proximal_init=False,
|
221 |
+
):
|
222 |
+
super().__init__()
|
223 |
+
assert channels % n_heads == 0
|
224 |
+
|
225 |
+
self.channels = channels
|
226 |
+
self.out_channels = out_channels
|
227 |
+
self.n_heads = n_heads
|
228 |
+
self.p_dropout = p_dropout
|
229 |
+
self.window_size = window_size
|
230 |
+
self.heads_share = heads_share
|
231 |
+
self.block_length = block_length
|
232 |
+
self.proximal_bias = proximal_bias
|
233 |
+
self.proximal_init = proximal_init
|
234 |
+
self.attn = None
|
235 |
+
|
236 |
+
self.k_channels = channels // n_heads
|
237 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
238 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
239 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
240 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
241 |
+
self.drop = nn.Dropout(p_dropout)
|
242 |
+
|
243 |
+
if window_size is not None:
|
244 |
+
n_heads_rel = 1 if heads_share else n_heads
|
245 |
+
rel_stddev = self.k_channels**-0.5
|
246 |
+
self.emb_rel_k = nn.Parameter(
|
247 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
248 |
+
* rel_stddev
|
249 |
+
)
|
250 |
+
self.emb_rel_v = nn.Parameter(
|
251 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
252 |
+
* rel_stddev
|
253 |
+
)
|
254 |
+
|
255 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
256 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
257 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
258 |
+
if proximal_init:
|
259 |
+
with torch.no_grad():
|
260 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
261 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
262 |
+
|
263 |
+
def forward(self, x, c, attn_mask=None):
|
264 |
+
q = self.conv_q(x)
|
265 |
+
k = self.conv_k(c)
|
266 |
+
v = self.conv_v(c)
|
267 |
+
|
268 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
269 |
+
|
270 |
+
x = self.conv_o(x)
|
271 |
+
return x
|
272 |
+
|
273 |
+
def attention(self, query, key, value, mask=None):
|
274 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
275 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
276 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
277 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
278 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
279 |
+
|
280 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
281 |
+
if self.window_size is not None:
|
282 |
+
assert (
|
283 |
+
t_s == t_t
|
284 |
+
), "Relative attention is only available for self-attention."
|
285 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
286 |
+
rel_logits = self._matmul_with_relative_keys(
|
287 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
288 |
+
)
|
289 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
290 |
+
scores = scores + scores_local
|
291 |
+
if self.proximal_bias:
|
292 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
293 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
294 |
+
device=scores.device, dtype=scores.dtype
|
295 |
+
)
|
296 |
+
if mask is not None:
|
297 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
298 |
+
if self.block_length is not None:
|
299 |
+
assert (
|
300 |
+
t_s == t_t
|
301 |
+
), "Local attention is only available for self-attention."
|
302 |
+
block_mask = (
|
303 |
+
torch.ones_like(scores)
|
304 |
+
.triu(-self.block_length)
|
305 |
+
.tril(self.block_length)
|
306 |
+
)
|
307 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
308 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
309 |
+
p_attn = self.drop(p_attn)
|
310 |
+
output = torch.matmul(p_attn, value)
|
311 |
+
if self.window_size is not None:
|
312 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
313 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
314 |
+
self.emb_rel_v, t_s
|
315 |
+
)
|
316 |
+
output = output + self._matmul_with_relative_values(
|
317 |
+
relative_weights, value_relative_embeddings
|
318 |
+
)
|
319 |
+
output = (
|
320 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
321 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
322 |
+
return output, p_attn
|
323 |
+
|
324 |
+
def _matmul_with_relative_values(self, x, y):
|
325 |
+
"""
|
326 |
+
x: [b, h, l, m]
|
327 |
+
y: [h or 1, m, d]
|
328 |
+
ret: [b, h, l, d]
|
329 |
+
"""
|
330 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
331 |
+
return ret
|
332 |
+
|
333 |
+
def _matmul_with_relative_keys(self, x, y):
|
334 |
+
"""
|
335 |
+
x: [b, h, l, d]
|
336 |
+
y: [h or 1, m, d]
|
337 |
+
ret: [b, h, l, m]
|
338 |
+
"""
|
339 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
340 |
+
return ret
|
341 |
+
|
342 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
343 |
+
2 * self.window_size + 1
|
344 |
+
# Pad first before slice to avoid using cond ops.
|
345 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
346 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
347 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
348 |
+
if pad_length > 0:
|
349 |
+
padded_relative_embeddings = F.pad(
|
350 |
+
relative_embeddings,
|
351 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
padded_relative_embeddings = relative_embeddings
|
355 |
+
used_relative_embeddings = padded_relative_embeddings[
|
356 |
+
:, slice_start_position:slice_end_position
|
357 |
+
]
|
358 |
+
return used_relative_embeddings
|
359 |
+
|
360 |
+
def _relative_position_to_absolute_position(self, x):
|
361 |
+
"""
|
362 |
+
x: [b, h, l, 2*l-1]
|
363 |
+
ret: [b, h, l, l]
|
364 |
+
"""
|
365 |
+
batch, heads, length, _ = x.size()
|
366 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
367 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
368 |
+
|
369 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
370 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
371 |
+
x_flat = F.pad(
|
372 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
373 |
+
)
|
374 |
+
|
375 |
+
# Reshape and slice out the padded elements.
|
376 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
377 |
+
:, :, :length, length - 1 :
|
378 |
+
]
|
379 |
+
return x_final
|
380 |
+
|
381 |
+
def _absolute_position_to_relative_position(self, x):
|
382 |
+
"""
|
383 |
+
x: [b, h, l, l]
|
384 |
+
ret: [b, h, l, 2*l-1]
|
385 |
+
"""
|
386 |
+
batch, heads, length, _ = x.size()
|
387 |
+
# pad along column
|
388 |
+
x = F.pad(
|
389 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
390 |
+
)
|
391 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
392 |
+
# add 0's in the beginning that will skew the elements after reshape
|
393 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
394 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
395 |
+
return x_final
|
396 |
+
|
397 |
+
def _attention_bias_proximal(self, length):
|
398 |
+
"""Bias for self-attention to encourage attention to close positions.
|
399 |
+
Args:
|
400 |
+
length: an integer scalar.
|
401 |
+
Returns:
|
402 |
+
a Tensor with shape [1, 1, length, length]
|
403 |
+
"""
|
404 |
+
r = torch.arange(length, dtype=torch.float32)
|
405 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
406 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
407 |
+
|
408 |
+
|
409 |
+
class FFN(nn.Module):
|
410 |
+
def __init__(
|
411 |
+
self,
|
412 |
+
in_channels,
|
413 |
+
out_channels,
|
414 |
+
filter_channels,
|
415 |
+
kernel_size,
|
416 |
+
p_dropout=0.0,
|
417 |
+
activation=None,
|
418 |
+
causal=False,
|
419 |
+
):
|
420 |
+
super().__init__()
|
421 |
+
self.in_channels = in_channels
|
422 |
+
self.out_channels = out_channels
|
423 |
+
self.filter_channels = filter_channels
|
424 |
+
self.kernel_size = kernel_size
|
425 |
+
self.p_dropout = p_dropout
|
426 |
+
self.activation = activation
|
427 |
+
self.causal = causal
|
428 |
+
|
429 |
+
if causal:
|
430 |
+
self.padding = self._causal_padding
|
431 |
+
else:
|
432 |
+
self.padding = self._same_padding
|
433 |
+
|
434 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
435 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
436 |
+
self.drop = nn.Dropout(p_dropout)
|
437 |
+
|
438 |
+
def forward(self, x, x_mask):
|
439 |
+
x = self.conv_1(self.padding(x * x_mask))
|
440 |
+
if self.activation == "gelu":
|
441 |
+
x = x * torch.sigmoid(1.702 * x)
|
442 |
+
else:
|
443 |
+
x = torch.relu(x)
|
444 |
+
x = self.drop(x)
|
445 |
+
x = self.conv_2(self.padding(x * x_mask))
|
446 |
+
return x * x_mask
|
447 |
+
|
448 |
+
def _causal_padding(self, x):
|
449 |
+
if self.kernel_size == 1:
|
450 |
+
return x
|
451 |
+
pad_l = self.kernel_size - 1
|
452 |
+
pad_r = 0
|
453 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
454 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
455 |
+
return x
|
456 |
+
|
457 |
+
def _same_padding(self, x):
|
458 |
+
if self.kernel_size == 1:
|
459 |
+
return x
|
460 |
+
pad_l = (self.kernel_size - 1) // 2
|
461 |
+
pad_r = self.kernel_size // 2
|
462 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
463 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
464 |
+
return x
|
author_and_voice_data.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"author": "習近平",
|
3 |
+
"voice": "XJP"
|
4 |
+
}
|
bert_gen.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from multiprocessing import Pool
|
3 |
+
import commons
|
4 |
+
import utils
|
5 |
+
from tqdm import tqdm
|
6 |
+
from text import check_bert_models, cleaned_text_to_sequence, get_bert
|
7 |
+
import argparse
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
from config import config
|
10 |
+
|
11 |
+
|
12 |
+
def process_line(x):
|
13 |
+
line, add_blank = x
|
14 |
+
device = config.bert_gen_config.device
|
15 |
+
if config.bert_gen_config.use_multi_device:
|
16 |
+
rank = mp.current_process()._identity
|
17 |
+
rank = rank[0] if len(rank) > 0 else 0
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
gpu_id = rank % torch.cuda.device_count()
|
20 |
+
device = torch.device(f"cuda:{gpu_id}")
|
21 |
+
else:
|
22 |
+
device = torch.device("cpu")
|
23 |
+
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
|
24 |
+
phone = phones.split(" ")
|
25 |
+
tone = [int(i) for i in tone.split(" ")]
|
26 |
+
word2ph = [int(i) for i in word2ph.split(" ")]
|
27 |
+
word2ph = [i for i in word2ph]
|
28 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
29 |
+
|
30 |
+
if add_blank:
|
31 |
+
phone = commons.intersperse(phone, 0)
|
32 |
+
tone = commons.intersperse(tone, 0)
|
33 |
+
language = commons.intersperse(language, 0)
|
34 |
+
for i in range(len(word2ph)):
|
35 |
+
word2ph[i] = word2ph[i] * 2
|
36 |
+
word2ph[0] += 1
|
37 |
+
|
38 |
+
bert_path = wav_path.replace(".WAV", ".wav").replace(".wav", ".bert.pt")
|
39 |
+
|
40 |
+
try:
|
41 |
+
bert = torch.load(bert_path)
|
42 |
+
assert bert.shape[-1] == len(phone)
|
43 |
+
except Exception:
|
44 |
+
bert = get_bert(text, word2ph, language_str, device)
|
45 |
+
assert bert.shape[-1] == len(phone)
|
46 |
+
torch.save(bert, bert_path)
|
47 |
+
|
48 |
+
|
49 |
+
preprocess_text_config = config.preprocess_text_config
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
parser = argparse.ArgumentParser()
|
53 |
+
parser.add_argument(
|
54 |
+
"-c", "--config", type=str, default=config.bert_gen_config.config_path
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--num_processes", type=int, default=config.bert_gen_config.num_processes
|
58 |
+
)
|
59 |
+
args, _ = parser.parse_known_args()
|
60 |
+
config_path = args.config
|
61 |
+
hps = utils.get_hparams_from_file(config_path)
|
62 |
+
check_bert_models()
|
63 |
+
lines = []
|
64 |
+
with open(hps.data.training_files, encoding="utf-8") as f:
|
65 |
+
lines.extend(f.readlines())
|
66 |
+
|
67 |
+
with open(hps.data.validation_files, encoding="utf-8") as f:
|
68 |
+
lines.extend(f.readlines())
|
69 |
+
add_blank = [hps.data.add_blank] * len(lines)
|
70 |
+
|
71 |
+
if len(lines) != 0:
|
72 |
+
num_processes = args.num_processes
|
73 |
+
with Pool(processes=num_processes) as pool:
|
74 |
+
for _ in tqdm(
|
75 |
+
pool.imap_unordered(process_line, zip(lines, add_blank)),
|
76 |
+
total=len(lines),
|
77 |
+
):
|
78 |
+
# 这里是缩进的代码块,表示循环体
|
79 |
+
pass # 使用pass语句作为占位符
|
80 |
+
|
81 |
+
print(f"bert生成完毕!, 共有{len(lines)}个bert.pt生成!")
|
clap_gen.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from multiprocessing import Pool, cpu_count
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.multiprocessing as mp
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
import utils
|
9 |
+
from config import config
|
10 |
+
from clap_wrapper import get_clap_audio_feature
|
11 |
+
import librosa
|
12 |
+
import os
|
13 |
+
|
14 |
+
os.environ["OMP_NUM_THREADS"] = "1"
|
15 |
+
os.environ["MKL_NUM_THREADS"] = "1"
|
16 |
+
|
17 |
+
|
18 |
+
def process_line(line):
|
19 |
+
device = config.emo_gen_config.device
|
20 |
+
if config.emo_gen_config.use_multi_device:
|
21 |
+
rank = mp.current_process()._identity
|
22 |
+
rank = rank[0] if len(rank) > 0 else 0
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
gpu_id = rank % torch.cuda.device_count()
|
25 |
+
device = torch.device(f"cuda:{gpu_id}")
|
26 |
+
else:
|
27 |
+
device = torch.device("cpu")
|
28 |
+
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
|
29 |
+
|
30 |
+
clap_path = wav_path.replace(".WAV", ".wav").replace(".wav", ".emo.pt")
|
31 |
+
if os.path.isfile(clap_path):
|
32 |
+
return
|
33 |
+
|
34 |
+
audio = librosa.load(wav_path, 48000)[0]
|
35 |
+
# audio = librosa.resample(audio, 44100, 48000)
|
36 |
+
|
37 |
+
clap = get_clap_audio_feature(audio, device)
|
38 |
+
torch.save(clap, clap_path)
|
39 |
+
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
parser = argparse.ArgumentParser()
|
43 |
+
parser.add_argument(
|
44 |
+
"-c", "--config", type=str, default=config.emo_gen_config.config_path
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--num_processes", type=int, default=config.emo_gen_config.num_processes
|
48 |
+
)
|
49 |
+
args, _ = parser.parse_known_args()
|
50 |
+
config_path = args.config
|
51 |
+
hps = utils.get_hparams_from_file(config_path)
|
52 |
+
lines = []
|
53 |
+
with open(hps.data.training_files, encoding="utf-8") as f:
|
54 |
+
lines.extend(f.readlines())
|
55 |
+
|
56 |
+
with open(hps.data.validation_files, encoding="utf-8") as f:
|
57 |
+
lines.extend(f.readlines())
|
58 |
+
if len(lines) != 0:
|
59 |
+
num_processes = min(args.num_processes, cpu_count())
|
60 |
+
with Pool(processes=num_processes) as pool:
|
61 |
+
for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)):
|
62 |
+
pass
|
63 |
+
|
64 |
+
print(f"clap生成完毕!, 共有{len(lines)}个emo.pt生成!")
|
clap_wrapper.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import ClapModel, ClapProcessor
|
5 |
+
|
6 |
+
from config import config
|
7 |
+
|
8 |
+
models = dict()
|
9 |
+
processor = ClapProcessor.from_pretrained("./emotional/clap-htsat-fused")
|
10 |
+
|
11 |
+
|
12 |
+
def get_clap_audio_feature(audio_data, device=config.bert_gen_config.device):
|
13 |
+
if (
|
14 |
+
sys.platform == "darwin"
|
15 |
+
and torch.backends.mps.is_available()
|
16 |
+
and device == "cpu"
|
17 |
+
):
|
18 |
+
device = "mps"
|
19 |
+
if not device:
|
20 |
+
device = "cuda"
|
21 |
+
if device not in models.keys():
|
22 |
+
models[device] = ClapModel.from_pretrained("./emotional/clap-htsat-fused").to(
|
23 |
+
device
|
24 |
+
)
|
25 |
+
with torch.no_grad():
|
26 |
+
inputs = processor(
|
27 |
+
audios=audio_data, return_tensors="pt", sampling_rate=48000
|
28 |
+
).to(device)
|
29 |
+
emb = models[device].get_audio_features(**inputs)
|
30 |
+
return emb.T
|
31 |
+
|
32 |
+
|
33 |
+
def get_clap_text_feature(text, device=config.bert_gen_config.device):
|
34 |
+
if (
|
35 |
+
sys.platform == "darwin"
|
36 |
+
and torch.backends.mps.is_available()
|
37 |
+
and device == "cpu"
|
38 |
+
):
|
39 |
+
device = "mps"
|
40 |
+
if not device:
|
41 |
+
device = "cuda"
|
42 |
+
if device not in models.keys():
|
43 |
+
models[device] = ClapModel.from_pretrained("./emotional/clap-htsat-fused").to(
|
44 |
+
device
|
45 |
+
)
|
46 |
+
with torch.no_grad():
|
47 |
+
inputs = processor(text=text, return_tensors="pt").to(device)
|
48 |
+
emb = models[device].get_text_features(**inputs)
|
49 |
+
return emb.T
|
commons.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def init_weights(m, mean=0.0, std=0.01):
|
7 |
+
classname = m.__class__.__name__
|
8 |
+
if classname.find("Conv") != -1:
|
9 |
+
m.weight.data.normal_(mean, std)
|
10 |
+
|
11 |
+
|
12 |
+
def get_padding(kernel_size, dilation=1):
|
13 |
+
return int((kernel_size * dilation - dilation) / 2)
|
14 |
+
|
15 |
+
|
16 |
+
def convert_pad_shape(pad_shape):
|
17 |
+
layer = pad_shape[::-1]
|
18 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
19 |
+
return pad_shape
|
20 |
+
|
21 |
+
|
22 |
+
def intersperse(lst, item):
|
23 |
+
result = [item] * (len(lst) * 2 + 1)
|
24 |
+
result[1::2] = lst
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
29 |
+
"""KL(P||Q)"""
|
30 |
+
kl = (logs_q - logs_p) - 0.5
|
31 |
+
kl += (
|
32 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
33 |
+
)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
gather_indices = ids_str.view(x.size(0), 1, 1).repeat(
|
50 |
+
1, x.size(1), 1
|
51 |
+
) + torch.arange(segment_size, device=x.device)
|
52 |
+
return torch.gather(x, 2, gather_indices)
|
53 |
+
|
54 |
+
|
55 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
56 |
+
b, d, t = x.size()
|
57 |
+
if x_lengths is None:
|
58 |
+
x_lengths = t
|
59 |
+
ids_str_max = torch.clamp(x_lengths - segment_size + 1, min=0)
|
60 |
+
ids_str = (torch.rand([b], device=x.device) * ids_str_max).to(dtype=torch.long)
|
61 |
+
ret = slice_segments(x, ids_str, segment_size)
|
62 |
+
return ret, ids_str
|
63 |
+
|
64 |
+
|
65 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
66 |
+
position = torch.arange(length, dtype=torch.float)
|
67 |
+
num_timescales = channels // 2
|
68 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
69 |
+
num_timescales - 1
|
70 |
+
)
|
71 |
+
inv_timescales = min_timescale * torch.exp(
|
72 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
73 |
+
)
|
74 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
75 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
76 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
77 |
+
signal = signal.view(1, channels, length)
|
78 |
+
return signal
|
79 |
+
|
80 |
+
|
81 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
82 |
+
b, channels, length = x.size()
|
83 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
84 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
85 |
+
|
86 |
+
|
87 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
88 |
+
b, channels, length = x.size()
|
89 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
90 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
91 |
+
|
92 |
+
|
93 |
+
def subsequent_mask(length):
|
94 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
95 |
+
return mask
|
96 |
+
|
97 |
+
|
98 |
+
@torch.jit.script
|
99 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
100 |
+
n_channels_int = n_channels[0]
|
101 |
+
in_act = input_a + input_b
|
102 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
103 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
104 |
+
acts = t_act * s_act
|
105 |
+
return acts
|
106 |
+
|
107 |
+
|
108 |
+
def convert_pad_shape(pad_shape):
|
109 |
+
layer = pad_shape[::-1]
|
110 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
111 |
+
return pad_shape
|
112 |
+
|
113 |
+
|
114 |
+
def shift_1d(x):
|
115 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
116 |
+
return x
|
117 |
+
|
118 |
+
|
119 |
+
def sequence_mask(length, max_length=None):
|
120 |
+
if max_length is None:
|
121 |
+
max_length = length.max()
|
122 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
123 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
124 |
+
|
125 |
+
|
126 |
+
def generate_path(duration, mask):
|
127 |
+
"""
|
128 |
+
duration: [b, 1, t_x]
|
129 |
+
mask: [b, 1, t_y, t_x]
|
130 |
+
"""
|
131 |
+
|
132 |
+
b, _, t_y, t_x = mask.shape
|
133 |
+
cum_duration = torch.cumsum(duration, -1)
|
134 |
+
|
135 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
136 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
137 |
+
path = path.view(b, t_x, t_y)
|
138 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
139 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
140 |
+
return path
|
141 |
+
|
142 |
+
|
143 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
144 |
+
if isinstance(parameters, torch.Tensor):
|
145 |
+
parameters = [parameters]
|
146 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
147 |
+
norm_type = float(norm_type)
|
148 |
+
if clip_value is not None:
|
149 |
+
clip_value = float(clip_value)
|
150 |
+
|
151 |
+
total_norm = 0
|
152 |
+
for p in parameters:
|
153 |
+
param_norm = p.grad.data.norm(norm_type)
|
154 |
+
total_norm += param_norm.item() ** norm_type
|
155 |
+
if clip_value is not None:
|
156 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
157 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
158 |
+
return total_norm
|
compress_model.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from text.symbols import symbols
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from tools.log import logger
|
6 |
+
import utils
|
7 |
+
from models import SynthesizerTrn
|
8 |
+
import os
|
9 |
+
|
10 |
+
|
11 |
+
def copyStateDict(state_dict):
|
12 |
+
if list(state_dict.keys())[0].startswith("module"):
|
13 |
+
start_idx = 1
|
14 |
+
else:
|
15 |
+
start_idx = 0
|
16 |
+
new_state_dict = OrderedDict()
|
17 |
+
for k, v in state_dict.items():
|
18 |
+
name = ",".join(k.split(".")[start_idx:])
|
19 |
+
new_state_dict[name] = v
|
20 |
+
return new_state_dict
|
21 |
+
|
22 |
+
|
23 |
+
def removeOptimizer(config: str, input_model: str, ishalf: bool, output_model: str):
|
24 |
+
hps = utils.get_hparams_from_file(config)
|
25 |
+
|
26 |
+
net_g = SynthesizerTrn(
|
27 |
+
len(symbols),
|
28 |
+
hps.data.filter_length // 2 + 1,
|
29 |
+
hps.train.segment_size // hps.data.hop_length,
|
30 |
+
n_speakers=hps.data.n_speakers,
|
31 |
+
**hps.model,
|
32 |
+
)
|
33 |
+
|
34 |
+
optim_g = torch.optim.AdamW(
|
35 |
+
net_g.parameters(),
|
36 |
+
hps.train.learning_rate,
|
37 |
+
betas=hps.train.betas,
|
38 |
+
eps=hps.train.eps,
|
39 |
+
)
|
40 |
+
|
41 |
+
state_dict_g = torch.load(input_model, map_location="cpu")
|
42 |
+
new_dict_g = copyStateDict(state_dict_g)
|
43 |
+
keys = []
|
44 |
+
for k, v in new_dict_g["model"].items():
|
45 |
+
if "enc_q" in k:
|
46 |
+
continue # noqa: E701
|
47 |
+
keys.append(k)
|
48 |
+
|
49 |
+
new_dict_g = (
|
50 |
+
{k: new_dict_g["model"][k].half() for k in keys}
|
51 |
+
if ishalf
|
52 |
+
else {k: new_dict_g["model"][k] for k in keys}
|
53 |
+
)
|
54 |
+
|
55 |
+
torch.save(
|
56 |
+
{
|
57 |
+
"model": new_dict_g,
|
58 |
+
"iteration": 0,
|
59 |
+
"optimizer": optim_g.state_dict(),
|
60 |
+
"learning_rate": 0.0001,
|
61 |
+
},
|
62 |
+
output_model,
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
import argparse
|
68 |
+
|
69 |
+
parser = argparse.ArgumentParser()
|
70 |
+
parser.add_argument("-c", "--config", type=str, default="configs/config.json")
|
71 |
+
parser.add_argument("-i", "--input", type=str)
|
72 |
+
parser.add_argument("-o", "--output", type=str, default=None)
|
73 |
+
parser.add_argument(
|
74 |
+
"-hf", "--half", action="store_true", default=False, help="Save as FP16"
|
75 |
+
)
|
76 |
+
|
77 |
+
args = parser.parse_args()
|
78 |
+
|
79 |
+
output = args.output
|
80 |
+
|
81 |
+
if output is None:
|
82 |
+
import os.path
|
83 |
+
|
84 |
+
filename, ext = os.path.splitext(args.input)
|
85 |
+
half = "_half" if args.half else ""
|
86 |
+
output = filename + "_release" + half + ext
|
87 |
+
|
88 |
+
removeOptimizer(args.config, args.input, args.half, output)
|
89 |
+
logger.info(f"压缩模型成功, 输出模型: {os.path.abspath(output)}")
|
config.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
@Desc: 全局配置文件读取
|
3 |
+
"""
|
4 |
+
import argparse
|
5 |
+
import yaml
|
6 |
+
from typing import Dict, List
|
7 |
+
import os
|
8 |
+
import shutil
|
9 |
+
import sys
|
10 |
+
|
11 |
+
|
12 |
+
class Resample_config:
|
13 |
+
"""重采样配置"""
|
14 |
+
|
15 |
+
def __init__(self, in_dir: str, out_dir: str, sampling_rate: int = 44100):
|
16 |
+
self.sampling_rate: int = sampling_rate # 目标采样率
|
17 |
+
self.in_dir: str = in_dir # 待处理音频目录路径
|
18 |
+
self.out_dir: str = out_dir # 重采样输出路径
|
19 |
+
|
20 |
+
@classmethod
|
21 |
+
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
22 |
+
"""从字典中生成实例"""
|
23 |
+
|
24 |
+
# 不检查路径是否有效,此逻辑在resample.py中处理
|
25 |
+
data["in_dir"] = os.path.join(dataset_path, data["in_dir"])
|
26 |
+
data["out_dir"] = os.path.join(dataset_path, data["out_dir"])
|
27 |
+
|
28 |
+
return cls(**data)
|
29 |
+
|
30 |
+
|
31 |
+
class Preprocess_text_config:
|
32 |
+
"""数据预处理配置"""
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
transcription_path: str,
|
37 |
+
cleaned_path: str,
|
38 |
+
train_path: str,
|
39 |
+
val_path: str,
|
40 |
+
config_path: str,
|
41 |
+
val_per_lang: int = 5,
|
42 |
+
max_val_total: int = 10000,
|
43 |
+
clean: bool = True,
|
44 |
+
):
|
45 |
+
self.transcription_path: str = transcription_path # 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。
|
46 |
+
self.cleaned_path: str = cleaned_path # 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成
|
47 |
+
self.train_path: str = train_path # 训练集路径,可以不填。不填则将在原始文本目录生成
|
48 |
+
self.val_path: str = val_path # 验证集路径,可以不填。不填则将在原始文本目录生成
|
49 |
+
self.config_path: str = config_path # 配置文件路径
|
50 |
+
self.val_per_lang: int = val_per_lang # 每个speaker的验证集条数
|
51 |
+
self.max_val_total: int = max_val_total # 验证集最大条数,多于的会被截断并放到训练集中
|
52 |
+
self.clean: bool = clean # 是否进行数据清洗
|
53 |
+
|
54 |
+
@classmethod
|
55 |
+
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
56 |
+
"""从字典中生成实例"""
|
57 |
+
|
58 |
+
data["transcription_path"] = os.path.join(
|
59 |
+
dataset_path, data["transcription_path"]
|
60 |
+
)
|
61 |
+
if data["cleaned_path"] == "" or data["cleaned_path"] is None:
|
62 |
+
data["cleaned_path"] = None
|
63 |
+
else:
|
64 |
+
data["cleaned_path"] = os.path.join(dataset_path, data["cleaned_path"])
|
65 |
+
data["train_path"] = os.path.join(dataset_path, data["train_path"])
|
66 |
+
data["val_path"] = os.path.join(dataset_path, data["val_path"])
|
67 |
+
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
68 |
+
|
69 |
+
return cls(**data)
|
70 |
+
|
71 |
+
|
72 |
+
class Bert_gen_config:
|
73 |
+
"""bert_gen 配置"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
config_path: str,
|
78 |
+
num_processes: int = 2,
|
79 |
+
device: str = "cuda",
|
80 |
+
use_multi_device: bool = False,
|
81 |
+
):
|
82 |
+
self.config_path = config_path
|
83 |
+
self.num_processes = num_processes
|
84 |
+
self.device = device
|
85 |
+
self.use_multi_device = use_multi_device
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
89 |
+
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
90 |
+
|
91 |
+
return cls(**data)
|
92 |
+
|
93 |
+
|
94 |
+
class Emo_gen_config:
|
95 |
+
"""emo_gen 配置"""
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
config_path: str,
|
100 |
+
num_processes: int = 2,
|
101 |
+
device: str = "cuda",
|
102 |
+
use_multi_device: bool = False,
|
103 |
+
):
|
104 |
+
self.config_path = config_path
|
105 |
+
self.num_processes = num_processes
|
106 |
+
self.device = device
|
107 |
+
self.use_multi_device = use_multi_device
|
108 |
+
|
109 |
+
@classmethod
|
110 |
+
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
111 |
+
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
112 |
+
|
113 |
+
return cls(**data)
|
114 |
+
|
115 |
+
|
116 |
+
class Train_ms_config:
|
117 |
+
"""训练配置"""
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
config_path: str,
|
122 |
+
env: Dict[str, any],
|
123 |
+
base: Dict[str, any],
|
124 |
+
model: str,
|
125 |
+
num_workers: int,
|
126 |
+
spec_cache: bool,
|
127 |
+
keep_ckpts: int,
|
128 |
+
):
|
129 |
+
self.env = env # 需要加载的环境变量
|
130 |
+
self.base = base # 底模配置
|
131 |
+
self.model = model # 训练模型存储目录,该路径为相对于dataset_path的路径,而非项目根目录
|
132 |
+
self.config_path = config_path # 配置文件路径
|
133 |
+
self.num_workers = num_workers # worker数量
|
134 |
+
self.spec_cache = spec_cache # 是否启用spec缓存
|
135 |
+
self.keep_ckpts = keep_ckpts # ckpt数量
|
136 |
+
|
137 |
+
@classmethod
|
138 |
+
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
139 |
+
# data["model"] = os.path.join(dataset_path, data["model"])
|
140 |
+
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
141 |
+
|
142 |
+
return cls(**data)
|
143 |
+
|
144 |
+
|
145 |
+
class Webui_config:
|
146 |
+
"""webui 配置"""
|
147 |
+
|
148 |
+
def __init__(
|
149 |
+
self,
|
150 |
+
device: str,
|
151 |
+
model: str,
|
152 |
+
config_path: str,
|
153 |
+
language_identification_library: str,
|
154 |
+
port: int = 7860,
|
155 |
+
share: bool = False,
|
156 |
+
debug: bool = False,
|
157 |
+
):
|
158 |
+
self.device: str = device
|
159 |
+
self.model: str = model # 端口号
|
160 |
+
self.config_path: str = config_path # 是否公开部署,对外网开放
|
161 |
+
self.port: int = port # 是否开启debug模式
|
162 |
+
self.share: bool = share # 模型路径
|
163 |
+
self.debug: bool = debug # 配置文件路径
|
164 |
+
self.language_identification_library: str = (
|
165 |
+
language_identification_library # 语种识别库
|
166 |
+
)
|
167 |
+
|
168 |
+
@classmethod
|
169 |
+
def from_dict(cls, dataset_path: str, data: Dict[str, any]):
|
170 |
+
data["config_path"] = os.path.join(dataset_path, data["config_path"])
|
171 |
+
data["model"] = os.path.join(dataset_path, data["model"])
|
172 |
+
return cls(**data)
|
173 |
+
|
174 |
+
|
175 |
+
class Server_config:
|
176 |
+
def __init__(
|
177 |
+
self, models: List[Dict[str, any]], port: int = 5000, device: str = "cuda"
|
178 |
+
):
|
179 |
+
self.models: List[Dict[str, any]] = models # 需要加载的所有模型的配置
|
180 |
+
self.port: int = port # 端口号
|
181 |
+
self.device: str = device # 模型默认使用设备
|
182 |
+
|
183 |
+
@classmethod
|
184 |
+
def from_dict(cls, data: Dict[str, any]):
|
185 |
+
return cls(**data)
|
186 |
+
|
187 |
+
|
188 |
+
class Translate_config:
|
189 |
+
"""翻译api配置"""
|
190 |
+
|
191 |
+
def __init__(self, app_key: str, secret_key: str):
|
192 |
+
self.app_key = app_key
|
193 |
+
self.secret_key = secret_key
|
194 |
+
|
195 |
+
@classmethod
|
196 |
+
def from_dict(cls, data: Dict[str, any]):
|
197 |
+
return cls(**data)
|
198 |
+
|
199 |
+
|
200 |
+
class Config:
|
201 |
+
def __init__(self, config_path: str):
|
202 |
+
if not os.path.isfile(config_path) and os.path.isfile("default_config.yml"):
|
203 |
+
shutil.copy(src="default_config.yml", dst=config_path)
|
204 |
+
print(
|
205 |
+
f"已根据默认配置文件default_config.yml生成配置文件{config_path}。请按该配置文件的说明进行配置后重新运行。"
|
206 |
+
)
|
207 |
+
print("如无特殊需求,请勿修改default_config.yml或备份该文件。")
|
208 |
+
sys.exit(0)
|
209 |
+
with open(file=config_path, mode="r", encoding="utf-8") as file:
|
210 |
+
yaml_config: Dict[str, any] = yaml.safe_load(file.read())
|
211 |
+
dataset_path: str = yaml_config["dataset_path"]
|
212 |
+
openi_token: str = yaml_config["openi_token"]
|
213 |
+
self.dataset_path: str = dataset_path
|
214 |
+
self.mirror: str = yaml_config["mirror"]
|
215 |
+
self.openi_token: str = openi_token
|
216 |
+
self.resample_config: Resample_config = Resample_config.from_dict(
|
217 |
+
dataset_path, yaml_config["resample"]
|
218 |
+
)
|
219 |
+
self.preprocess_text_config: Preprocess_text_config = (
|
220 |
+
Preprocess_text_config.from_dict(
|
221 |
+
dataset_path, yaml_config["preprocess_text"]
|
222 |
+
)
|
223 |
+
)
|
224 |
+
self.bert_gen_config: Bert_gen_config = Bert_gen_config.from_dict(
|
225 |
+
dataset_path, yaml_config["bert_gen"]
|
226 |
+
)
|
227 |
+
self.emo_gen_config: Emo_gen_config = Emo_gen_config.from_dict(
|
228 |
+
dataset_path, yaml_config["emo_gen"]
|
229 |
+
)
|
230 |
+
self.train_ms_config: Train_ms_config = Train_ms_config.from_dict(
|
231 |
+
dataset_path, yaml_config["train_ms"]
|
232 |
+
)
|
233 |
+
self.webui_config: Webui_config = Webui_config.from_dict(
|
234 |
+
dataset_path, yaml_config["webui"]
|
235 |
+
)
|
236 |
+
self.server_config: Server_config = Server_config.from_dict(
|
237 |
+
yaml_config["server"]
|
238 |
+
)
|
239 |
+
self.translate_config: Translate_config = Translate_config.from_dict(
|
240 |
+
yaml_config["translate"]
|
241 |
+
)
|
242 |
+
|
243 |
+
|
244 |
+
parser = argparse.ArgumentParser()
|
245 |
+
# 为避免与以前的config.json起冲突,将其更名如下
|
246 |
+
parser.add_argument("-y", "--yml_config", type=str, default="config.yml")
|
247 |
+
args, _ = parser.parse_known_args()
|
248 |
+
config = Config(args.yml_config)
|
config.yml
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 全局配置
|
2 |
+
# 对于希望在同一时间使用多个配置文件的情况,例如两个GPU同时跑两个训练集:通过环境变量指定配置文件,不指定则默认为./config.yml
|
3 |
+
|
4 |
+
# 拟提供通用路径配置,统一存放数据,避免数据放得很乱
|
5 |
+
# 每个数据集与其对应的模型存放至统一路径下,后续所有的路径配置均为相对于datasetPath的路径
|
6 |
+
# 不填或者填空则路径为相对于项目根目录的路径
|
7 |
+
dataset_path: "Data/XJP"
|
8 |
+
|
9 |
+
# 模型镜像源,默认huggingface,使用openi镜像源需指定openi_token
|
10 |
+
mirror: ""
|
11 |
+
openi_token: "" # openi token
|
12 |
+
|
13 |
+
# resample 音频重采样配置
|
14 |
+
# 注意, “:” 后需要加空格
|
15 |
+
resample:
|
16 |
+
# 目标重采样率
|
17 |
+
sampling_rate: 44100
|
18 |
+
# 音频文件输入路径,重采样会将该路径下所有.wav音频文件重采样
|
19 |
+
# 请填入相对于datasetPath的相对路径
|
20 |
+
in_dir: "audios/raw" # 相对于根目录的路径为 /datasetPath/in_dir
|
21 |
+
# 音频文件重采样后输出路径
|
22 |
+
out_dir: "audios/wavs"
|
23 |
+
|
24 |
+
|
25 |
+
# preprocess_text 数据集预处理相关配置
|
26 |
+
# 注意, “:” 后需要加空格
|
27 |
+
preprocess_text:
|
28 |
+
# 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。
|
29 |
+
transcription_path: "filelists/Azusa.list"
|
30 |
+
# 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成
|
31 |
+
cleaned_path: ""
|
32 |
+
# 训练集路径
|
33 |
+
train_path: "filelists/train.list"
|
34 |
+
# 验证集路径
|
35 |
+
val_path: "filelists/val.list"
|
36 |
+
# 配置文件路径
|
37 |
+
config_path: "config.json"
|
38 |
+
# 每个语言的验证集条数
|
39 |
+
val_per_lang: 4
|
40 |
+
# 验证集最大条数,多于的会被截断并放到训练集中
|
41 |
+
max_val_total: 12
|
42 |
+
# 是否进行数据清洗
|
43 |
+
clean: true
|
44 |
+
|
45 |
+
|
46 |
+
# bert_gen 相关配置
|
47 |
+
# 注意, “:” 后需要加空格
|
48 |
+
bert_gen:
|
49 |
+
# 训练数据集配置文件路径
|
50 |
+
config_path: "config.json"
|
51 |
+
# 并行数
|
52 |
+
num_processes: 4
|
53 |
+
# 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
|
54 |
+
# 该选项同时决定了get_bert_feature的默认设备
|
55 |
+
device: "cuda"
|
56 |
+
# 使用多卡推理
|
57 |
+
use_multi_device: false
|
58 |
+
|
59 |
+
# emo_gen 相关配置
|
60 |
+
# 注意, “:” 后需要加空格
|
61 |
+
emo_gen:
|
62 |
+
# 训练数据集配置文件路径
|
63 |
+
config_path: "config.json"
|
64 |
+
# 并行数
|
65 |
+
num_processes: 4
|
66 |
+
# 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
|
67 |
+
device: "cuda"
|
68 |
+
# 使用多卡推理
|
69 |
+
use_multi_device: false
|
70 |
+
|
71 |
+
# train 训练配置
|
72 |
+
# 注意, “:” 后需要加空格
|
73 |
+
train_ms:
|
74 |
+
env:
|
75 |
+
MASTER_ADDR: "localhost"
|
76 |
+
MASTER_PORT: 10086
|
77 |
+
WORLD_SIZE: 1
|
78 |
+
LOCAL_RANK: 0
|
79 |
+
RANK: 0
|
80 |
+
# 可以填写任意名的环境变量
|
81 |
+
# THE_ENV_VAR_YOU_NEED_TO_USE: "1234567"
|
82 |
+
# 底模设置
|
83 |
+
base:
|
84 |
+
use_base_model: True
|
85 |
+
repo_id: "Stardust_minus/Bert-VITS2"
|
86 |
+
model_image: "Bert-VITS2_2.3_huge" # openi网页的模型名
|
87 |
+
# 训练模型存储目录:与旧版本的区别,原先数据集是存放在logs/model_name下的,现在改为统一存放在Data/你的数据集/models下
|
88 |
+
model: "models"
|
89 |
+
# 配置文件路径
|
90 |
+
config_path: "config.json"
|
91 |
+
# 训练使用的worker,不建议超过CPU核心数
|
92 |
+
num_workers: 16
|
93 |
+
# 关闭此项可以节约接近50%的磁盘空间,但是可能导致实际训练速度变慢和更高的CPU使用率。
|
94 |
+
spec_cache: True
|
95 |
+
# 保存的检查点数量,多于此数目的权重会被删除来节省空间。
|
96 |
+
keep_ckpts: 100
|
97 |
+
|
98 |
+
|
99 |
+
# webui webui配置
|
100 |
+
# 注意, “:” 后需要加空格
|
101 |
+
webui:
|
102 |
+
# 推理设备
|
103 |
+
device: "cpu"
|
104 |
+
# 模型路径
|
105 |
+
model: "models/G_3000.pth"
|
106 |
+
# 配置文件路径
|
107 |
+
config_path: "config.json"
|
108 |
+
# 端口号
|
109 |
+
port: 7860
|
110 |
+
# 是否公开部署,对外网开放
|
111 |
+
share: false
|
112 |
+
# 是否开启debug模式
|
113 |
+
debug: false
|
114 |
+
# 语种识别库,可选langid, fastlid
|
115 |
+
language_identification_library: "langid"
|
116 |
+
|
117 |
+
|
118 |
+
# server-fastapi配置
|
119 |
+
# 注意, “:” 后需要加空格
|
120 |
+
# 注意,本配置下的所有配置均为相对于根目录的路径
|
121 |
+
server:
|
122 |
+
# 端口号
|
123 |
+
port: 5000
|
124 |
+
# 模型默认使用设备:但是当前并没有实现这个配置。
|
125 |
+
device: "cuda"
|
126 |
+
# 需要加载的所有模型的配置,可以填多个模型,也可以不填模型,等网页成功后手动加载模型
|
127 |
+
# 不加载模型的配置格式:删除默认给的两个模型配置,给models赋值 [ ],也就是空列表。参考模型2的speakers 即 models: [ ]
|
128 |
+
# 注意,所有模型都必须正确配置model与config的路径,空路径会导致加载错误。
|
129 |
+
# 也可以不填模型,等网页加载成功后手动填写models。
|
130 |
+
models:
|
131 |
+
- # 模型的路径
|
132 |
+
model: ""
|
133 |
+
# 模型config.json的路径
|
134 |
+
config: ""
|
135 |
+
# 模型使用设备,若填写则会覆盖默认配置
|
136 |
+
device: "cuda"
|
137 |
+
# 模型默认使用的语言
|
138 |
+
language: "ZH"
|
139 |
+
# 模型人物默认参数
|
140 |
+
# 不必填写所有人物,不填的使用默认值
|
141 |
+
# 暂时不用填写,当前尚未实现按人区分配置
|
142 |
+
speakers:
|
143 |
+
- speaker: "科比"
|
144 |
+
sdp_ratio: 0.2
|
145 |
+
noise_scale: 0.6
|
146 |
+
noise_scale_w: 0.8
|
147 |
+
length_scale: 1
|
148 |
+
- speaker: "五条悟"
|
149 |
+
sdp_ratio: 0.3
|
150 |
+
noise_scale: 0.7
|
151 |
+
noise_scale_w: 0.8
|
152 |
+
length_scale: 0.5
|
153 |
+
- speaker: "安倍晋三"
|
154 |
+
sdp_ratio: 0.2
|
155 |
+
noise_scale: 0.6
|
156 |
+
noise_scale_w: 0.8
|
157 |
+
length_scale: 1.2
|
158 |
+
- # 模型的路径
|
159 |
+
model: ""
|
160 |
+
# 模型config.json的路径
|
161 |
+
config: ""
|
162 |
+
# 模型使用设备,若填写则会覆盖默认配置
|
163 |
+
device: "cpu"
|
164 |
+
# 模型默认使用的语言
|
165 |
+
language: "JP"
|
166 |
+
# 模型人物默认参数
|
167 |
+
# 不必填写所有人物,不填的使用默认值
|
168 |
+
speakers: [ ] # 也可以不填
|
169 |
+
|
170 |
+
# 百度翻译开放平台 api配置
|
171 |
+
# api接入文档 https://api.fanyi.baidu.com/doc/21
|
172 |
+
# 请不要在github等网站公开分享你的app id 与 key
|
173 |
+
translate:
|
174 |
+
# 你的APPID
|
175 |
+
"app_key": ""
|
176 |
+
# 你的密钥
|
177 |
+
"secret_key": ""
|
data_utils.py
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import torch.utils.data
|
5 |
+
from tqdm import tqdm
|
6 |
+
import numpy as np
|
7 |
+
from tools.log import logger
|
8 |
+
import commons
|
9 |
+
from mel_processing import spectrogram_torch, mel_spectrogram_torch
|
10 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
11 |
+
from text import cleaned_text_to_sequence
|
12 |
+
from config import config
|
13 |
+
|
14 |
+
"""Multi speaker version"""
|
15 |
+
|
16 |
+
|
17 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
18 |
+
"""
|
19 |
+
1) loads audio, speaker_id, text pairs
|
20 |
+
2) normalizes text and converts them to sequences of integers
|
21 |
+
3) computes spectrograms from audio files.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
25 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
26 |
+
self.max_wav_value = hparams.max_wav_value
|
27 |
+
self.sampling_rate = hparams.sampling_rate
|
28 |
+
self.filter_length = hparams.filter_length
|
29 |
+
self.hop_length = hparams.hop_length
|
30 |
+
self.win_length = hparams.win_length
|
31 |
+
self.sampling_rate = hparams.sampling_rate
|
32 |
+
self.spk_map = hparams.spk2id
|
33 |
+
self.hparams = hparams
|
34 |
+
|
35 |
+
self.use_mel_spec_posterior = getattr(
|
36 |
+
hparams, "use_mel_posterior_encoder", False
|
37 |
+
)
|
38 |
+
if self.use_mel_spec_posterior:
|
39 |
+
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
|
40 |
+
|
41 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
42 |
+
|
43 |
+
self.add_blank = hparams.add_blank
|
44 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
45 |
+
self.max_text_len = getattr(hparams, "max_text_len", 384)
|
46 |
+
|
47 |
+
random.seed(1234)
|
48 |
+
random.shuffle(self.audiopaths_sid_text)
|
49 |
+
self._filter()
|
50 |
+
|
51 |
+
def _filter(self):
|
52 |
+
"""
|
53 |
+
Filter text & store spec lengths
|
54 |
+
"""
|
55 |
+
# Store spectrogram lengths for Bucketing
|
56 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
57 |
+
# spec_length = wav_length // hop_length
|
58 |
+
|
59 |
+
audiopaths_sid_text_new = []
|
60 |
+
lengths = []
|
61 |
+
skipped = 0
|
62 |
+
logger.info("Init dataset...")
|
63 |
+
for _id, spk, language, text, phones, tone, word2ph in tqdm(
|
64 |
+
self.audiopaths_sid_text
|
65 |
+
):
|
66 |
+
audiopath = f"{_id}"
|
67 |
+
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
|
68 |
+
phones = phones.split(" ")
|
69 |
+
tone = [int(i) for i in tone.split(" ")]
|
70 |
+
word2ph = [int(i) for i in word2ph.split(" ")]
|
71 |
+
audiopaths_sid_text_new.append(
|
72 |
+
[audiopath, spk, language, text, phones, tone, word2ph]
|
73 |
+
)
|
74 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
75 |
+
else:
|
76 |
+
skipped += 1
|
77 |
+
logger.info(
|
78 |
+
"skipped: "
|
79 |
+
+ str(skipped)
|
80 |
+
+ ", total: "
|
81 |
+
+ str(len(self.audiopaths_sid_text))
|
82 |
+
)
|
83 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
84 |
+
self.lengths = lengths
|
85 |
+
|
86 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
87 |
+
# separate filename, speaker_id and text
|
88 |
+
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
|
89 |
+
|
90 |
+
bert, ja_bert, en_bert, phones, tone, language = self.get_text(
|
91 |
+
text, word2ph, phones, tone, language, audiopath
|
92 |
+
)
|
93 |
+
|
94 |
+
spec, wav = self.get_audio(audiopath)
|
95 |
+
sid = torch.LongTensor([int(self.spk_map[sid])])
|
96 |
+
|
97 |
+
return (phones, spec, wav, sid, tone, language, bert, ja_bert, en_bert)
|
98 |
+
|
99 |
+
def get_audio(self, filename):
|
100 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
101 |
+
if sampling_rate != self.sampling_rate:
|
102 |
+
raise ValueError(
|
103 |
+
"{} {} SR doesn't match target {} SR".format(
|
104 |
+
filename, sampling_rate, self.sampling_rate
|
105 |
+
)
|
106 |
+
)
|
107 |
+
audio_norm = audio / self.max_wav_value
|
108 |
+
audio_norm = audio_norm.unsqueeze(0)
|
109 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
110 |
+
if self.use_mel_spec_posterior:
|
111 |
+
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
112 |
+
try:
|
113 |
+
spec = torch.load(spec_filename)
|
114 |
+
except:
|
115 |
+
if self.use_mel_spec_posterior:
|
116 |
+
spec = mel_spectrogram_torch(
|
117 |
+
audio_norm,
|
118 |
+
self.filter_length,
|
119 |
+
self.n_mel_channels,
|
120 |
+
self.sampling_rate,
|
121 |
+
self.hop_length,
|
122 |
+
self.win_length,
|
123 |
+
self.hparams.mel_fmin,
|
124 |
+
self.hparams.mel_fmax,
|
125 |
+
center=False,
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
spec = spectrogram_torch(
|
129 |
+
audio_norm,
|
130 |
+
self.filter_length,
|
131 |
+
self.sampling_rate,
|
132 |
+
self.hop_length,
|
133 |
+
self.win_length,
|
134 |
+
center=False,
|
135 |
+
)
|
136 |
+
spec = torch.squeeze(spec, 0)
|
137 |
+
if config.train_ms_config.spec_cache:
|
138 |
+
torch.save(spec, spec_filename)
|
139 |
+
return spec, audio_norm
|
140 |
+
|
141 |
+
def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
|
142 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
143 |
+
if self.add_blank:
|
144 |
+
phone = commons.intersperse(phone, 0)
|
145 |
+
tone = commons.intersperse(tone, 0)
|
146 |
+
language = commons.intersperse(language, 0)
|
147 |
+
for i in range(len(word2ph)):
|
148 |
+
word2ph[i] = word2ph[i] * 2
|
149 |
+
word2ph[0] += 1
|
150 |
+
bert_path = wav_path.replace(".wav", ".bert.pt")
|
151 |
+
try:
|
152 |
+
bert_ori = torch.load(bert_path)
|
153 |
+
assert bert_ori.shape[-1] == len(phone)
|
154 |
+
except Exception as e:
|
155 |
+
logger.warning("Bert load Failed")
|
156 |
+
logger.warning(e)
|
157 |
+
|
158 |
+
if language_str == "ZH":
|
159 |
+
bert = bert_ori
|
160 |
+
ja_bert = torch.randn(1024, len(phone))
|
161 |
+
en_bert = torch.randn(1024, len(phone))
|
162 |
+
elif language_str == "JP":
|
163 |
+
bert = torch.randn(1024, len(phone))
|
164 |
+
ja_bert = bert_ori
|
165 |
+
en_bert = torch.randn(1024, len(phone))
|
166 |
+
elif language_str == "EN":
|
167 |
+
bert = torch.randn(1024, len(phone))
|
168 |
+
ja_bert = torch.randn(1024, len(phone))
|
169 |
+
en_bert = bert_ori
|
170 |
+
phone = torch.LongTensor(phone)
|
171 |
+
tone = torch.LongTensor(tone)
|
172 |
+
language = torch.LongTensor(language)
|
173 |
+
return bert, ja_bert, en_bert, phone, tone, language
|
174 |
+
|
175 |
+
def get_sid(self, sid):
|
176 |
+
sid = torch.LongTensor([int(sid)])
|
177 |
+
return sid
|
178 |
+
|
179 |
+
def __getitem__(self, index):
|
180 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
181 |
+
|
182 |
+
def __len__(self):
|
183 |
+
return len(self.audiopaths_sid_text)
|
184 |
+
|
185 |
+
|
186 |
+
class TextAudioSpeakerCollate:
|
187 |
+
"""Zero-pads model inputs and targets"""
|
188 |
+
|
189 |
+
def __init__(self, return_ids=False):
|
190 |
+
self.return_ids = return_ids
|
191 |
+
|
192 |
+
def __call__(self, batch):
|
193 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
194 |
+
PARAMS
|
195 |
+
------
|
196 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
197 |
+
"""
|
198 |
+
# Right zero-pad all one-hot text sequences to max input length
|
199 |
+
_, ids_sorted_decreasing = torch.sort(
|
200 |
+
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
201 |
+
)
|
202 |
+
|
203 |
+
max_text_len = max([len(x[0]) for x in batch])
|
204 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
205 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
206 |
+
|
207 |
+
text_lengths = torch.LongTensor(len(batch))
|
208 |
+
spec_lengths = torch.LongTensor(len(batch))
|
209 |
+
wav_lengths = torch.LongTensor(len(batch))
|
210 |
+
sid = torch.LongTensor(len(batch))
|
211 |
+
|
212 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
213 |
+
tone_padded = torch.LongTensor(len(batch), max_text_len)
|
214 |
+
language_padded = torch.LongTensor(len(batch), max_text_len)
|
215 |
+
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
216 |
+
ja_bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
217 |
+
en_bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
218 |
+
|
219 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
220 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
221 |
+
text_padded.zero_()
|
222 |
+
tone_padded.zero_()
|
223 |
+
language_padded.zero_()
|
224 |
+
spec_padded.zero_()
|
225 |
+
wav_padded.zero_()
|
226 |
+
bert_padded.zero_()
|
227 |
+
ja_bert_padded.zero_()
|
228 |
+
en_bert_padded.zero_()
|
229 |
+
|
230 |
+
for i in range(len(ids_sorted_decreasing)):
|
231 |
+
row = batch[ids_sorted_decreasing[i]]
|
232 |
+
|
233 |
+
text = row[0]
|
234 |
+
text_padded[i, : text.size(0)] = text
|
235 |
+
text_lengths[i] = text.size(0)
|
236 |
+
|
237 |
+
spec = row[1]
|
238 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
239 |
+
spec_lengths[i] = spec.size(1)
|
240 |
+
|
241 |
+
wav = row[2]
|
242 |
+
wav_padded[i, :, : wav.size(1)] = wav
|
243 |
+
wav_lengths[i] = wav.size(1)
|
244 |
+
|
245 |
+
sid[i] = row[3]
|
246 |
+
|
247 |
+
tone = row[4]
|
248 |
+
tone_padded[i, : tone.size(0)] = tone
|
249 |
+
|
250 |
+
language = row[5]
|
251 |
+
language_padded[i, : language.size(0)] = language
|
252 |
+
|
253 |
+
bert = row[6]
|
254 |
+
bert_padded[i, :, : bert.size(1)] = bert
|
255 |
+
|
256 |
+
ja_bert = row[7]
|
257 |
+
ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
|
258 |
+
|
259 |
+
en_bert = row[8]
|
260 |
+
en_bert_padded[i, :, : en_bert.size(1)] = en_bert
|
261 |
+
|
262 |
+
return (
|
263 |
+
text_padded,
|
264 |
+
text_lengths,
|
265 |
+
spec_padded,
|
266 |
+
spec_lengths,
|
267 |
+
wav_padded,
|
268 |
+
wav_lengths,
|
269 |
+
sid,
|
270 |
+
tone_padded,
|
271 |
+
language_padded,
|
272 |
+
bert_padded,
|
273 |
+
ja_bert_padded,
|
274 |
+
en_bert_padded,
|
275 |
+
)
|
276 |
+
|
277 |
+
|
278 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
279 |
+
"""
|
280 |
+
Maintain similar input lengths in a batch.
|
281 |
+
Length groups are specified by boundaries.
|
282 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
283 |
+
|
284 |
+
It removes samples which are not included in the boundaries.
|
285 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
286 |
+
"""
|
287 |
+
|
288 |
+
def __init__(
|
289 |
+
self,
|
290 |
+
dataset,
|
291 |
+
batch_size,
|
292 |
+
boundaries,
|
293 |
+
num_replicas=None,
|
294 |
+
rank=None,
|
295 |
+
shuffle=True,
|
296 |
+
):
|
297 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
298 |
+
self.lengths = dataset.lengths
|
299 |
+
self.batch_size = batch_size
|
300 |
+
self.boundaries = boundaries
|
301 |
+
|
302 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
303 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
304 |
+
self.num_samples = self.total_size // self.num_replicas
|
305 |
+
|
306 |
+
def _create_buckets(self):
|
307 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
308 |
+
for i in range(len(self.lengths)):
|
309 |
+
length = self.lengths[i]
|
310 |
+
idx_bucket = self._bisect(length)
|
311 |
+
if idx_bucket != -1:
|
312 |
+
buckets[idx_bucket].append(i)
|
313 |
+
|
314 |
+
try:
|
315 |
+
for i in range(len(buckets) - 1, 0, -1):
|
316 |
+
if len(buckets[i]) == 0:
|
317 |
+
buckets.pop(i)
|
318 |
+
self.boundaries.pop(i + 1)
|
319 |
+
assert all(len(bucket) > 0 for bucket in buckets)
|
320 |
+
# When one bucket is not traversed
|
321 |
+
except Exception as e:
|
322 |
+
print("Bucket warning ", e)
|
323 |
+
for i in range(len(buckets) - 1, -1, -1):
|
324 |
+
if len(buckets[i]) == 0:
|
325 |
+
buckets.pop(i)
|
326 |
+
self.boundaries.pop(i + 1)
|
327 |
+
|
328 |
+
num_samples_per_bucket = []
|
329 |
+
for i in range(len(buckets)):
|
330 |
+
len_bucket = len(buckets[i])
|
331 |
+
total_batch_size = self.num_replicas * self.batch_size
|
332 |
+
rem = (
|
333 |
+
total_batch_size - (len_bucket % total_batch_size)
|
334 |
+
) % total_batch_size
|
335 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
336 |
+
return buckets, num_samples_per_bucket
|
337 |
+
|
338 |
+
def __iter__(self):
|
339 |
+
# deterministically shuffle based on epoch
|
340 |
+
g = torch.Generator()
|
341 |
+
g.manual_seed(self.epoch)
|
342 |
+
|
343 |
+
indices = []
|
344 |
+
if self.shuffle:
|
345 |
+
for bucket in self.buckets:
|
346 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
347 |
+
else:
|
348 |
+
for bucket in self.buckets:
|
349 |
+
indices.append(list(range(len(bucket))))
|
350 |
+
|
351 |
+
batches = []
|
352 |
+
for i in range(len(self.buckets)):
|
353 |
+
bucket = self.buckets[i]
|
354 |
+
len_bucket = len(bucket)
|
355 |
+
if len_bucket == 0:
|
356 |
+
continue
|
357 |
+
ids_bucket = indices[i]
|
358 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
359 |
+
|
360 |
+
# add extra samples to make it evenly divisible
|
361 |
+
rem = num_samples_bucket - len_bucket
|
362 |
+
ids_bucket = (
|
363 |
+
ids_bucket
|
364 |
+
+ ids_bucket * (rem // len_bucket)
|
365 |
+
+ ids_bucket[: (rem % len_bucket)]
|
366 |
+
)
|
367 |
+
|
368 |
+
# subsample
|
369 |
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
370 |
+
|
371 |
+
# batching
|
372 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
373 |
+
batch = [
|
374 |
+
bucket[idx]
|
375 |
+
for idx in ids_bucket[
|
376 |
+
j * self.batch_size : (j + 1) * self.batch_size
|
377 |
+
]
|
378 |
+
]
|
379 |
+
batches.append(batch)
|
380 |
+
|
381 |
+
if self.shuffle:
|
382 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
383 |
+
batches = [batches[i] for i in batch_ids]
|
384 |
+
self.batches = batches
|
385 |
+
|
386 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
387 |
+
return iter(self.batches)
|
388 |
+
|
389 |
+
def _bisect(self, x, lo=0, hi=None):
|
390 |
+
if hi is None:
|
391 |
+
hi = len(self.boundaries) - 1
|
392 |
+
|
393 |
+
if hi > lo:
|
394 |
+
mid = (hi + lo) // 2
|
395 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
396 |
+
return mid
|
397 |
+
elif x <= self.boundaries[mid]:
|
398 |
+
return self._bisect(x, lo, mid)
|
399 |
+
else:
|
400 |
+
return self._bisect(x, mid + 1, hi)
|
401 |
+
else:
|
402 |
+
return -1
|
403 |
+
|
404 |
+
def __len__(self):
|
405 |
+
return self.num_samples // self.batch_size
|
default_config.yml
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 全局配置
|
2 |
+
# 对于希望在同一时间使用多个配置文件的情况,例如两个GPU同时跑两个训练集:通过环境变量指定配置文件,不指定则默认为./config.yml
|
3 |
+
|
4 |
+
# 拟提供通用路径配置,统一存放数据,避免数据放得很乱
|
5 |
+
# 每个数据集与其对应的模型存放至统一路径下,后续所有的路径配置均为相对于datasetPath的路径
|
6 |
+
# 不填或者填空则路径为相对于项目根目录的路径
|
7 |
+
dataset_path: "Data/"
|
8 |
+
|
9 |
+
# 模型镜像源,默认huggingface,使用openi镜像源需指定openi_token
|
10 |
+
mirror: ""
|
11 |
+
openi_token: "" # openi token
|
12 |
+
|
13 |
+
# resample 音频重采样配置
|
14 |
+
# 注意, “:” 后需要加空格
|
15 |
+
resample:
|
16 |
+
# 目标重采样率
|
17 |
+
sampling_rate: 44100
|
18 |
+
# 音频文件输入路径,重采样会将该路径下所有.wav音频文件重采样
|
19 |
+
# 请填入相对于datasetPath的相对路径
|
20 |
+
in_dir: "audios/raw" # 相对于根目录的路径为 /datasetPath/in_dir
|
21 |
+
# 音频文件重采样后输出路径
|
22 |
+
out_dir: "audios/wavs"
|
23 |
+
|
24 |
+
|
25 |
+
# preprocess_text 数据集预处理相关配置
|
26 |
+
# 注意, “:” 后需要加空格
|
27 |
+
preprocess_text:
|
28 |
+
# 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。
|
29 |
+
transcription_path: "filelists/你的数据集文本.list"
|
30 |
+
# 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成
|
31 |
+
cleaned_path: ""
|
32 |
+
# 训练集路径
|
33 |
+
train_path: "filelists/train.list"
|
34 |
+
# 验证集路径
|
35 |
+
val_path: "filelists/val.list"
|
36 |
+
# 配置文件路径
|
37 |
+
config_path: "config.json"
|
38 |
+
# 每个语言的验证集条数
|
39 |
+
val_per_lang: 4
|
40 |
+
# 验证集最大条数,多于的会被截断并放到训练集中
|
41 |
+
max_val_total: 12
|
42 |
+
# 是否进行数据清洗
|
43 |
+
clean: true
|
44 |
+
|
45 |
+
|
46 |
+
# bert_gen 相关配置
|
47 |
+
# 注意, “:” 后需要加空格
|
48 |
+
bert_gen:
|
49 |
+
# 训练数据集配置文件路径
|
50 |
+
config_path: "config.json"
|
51 |
+
# 并行数
|
52 |
+
num_processes: 4
|
53 |
+
# 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
|
54 |
+
# 该选项同时决定了get_bert_feature的默认设备
|
55 |
+
device: "cuda"
|
56 |
+
# 使用多卡推理
|
57 |
+
use_multi_device: false
|
58 |
+
|
59 |
+
# emo_gen 相关配置
|
60 |
+
# 注意, “:” 后需要加空格
|
61 |
+
emo_gen:
|
62 |
+
# 训练数据集配置文件路径
|
63 |
+
config_path: "config.json"
|
64 |
+
# 并行数
|
65 |
+
num_processes: 4
|
66 |
+
# 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
|
67 |
+
device: "cuda"
|
68 |
+
# 使用多卡推理
|
69 |
+
use_multi_device: false
|
70 |
+
|
71 |
+
# train 训练配置
|
72 |
+
# 注意, “:” 后需要加空格
|
73 |
+
train_ms:
|
74 |
+
env:
|
75 |
+
MASTER_ADDR: "localhost"
|
76 |
+
MASTER_PORT: 10086
|
77 |
+
WORLD_SIZE: 1
|
78 |
+
LOCAL_RANK: 0
|
79 |
+
RANK: 0
|
80 |
+
# 可以填写任意名的环境变量
|
81 |
+
# THE_ENV_VAR_YOU_NEED_TO_USE: "1234567"
|
82 |
+
# 底模设置
|
83 |
+
base:
|
84 |
+
use_base_model: false
|
85 |
+
repo_id: "Stardust_minus/Bert-VITS2"
|
86 |
+
model_image: "Bert-VITS2_2.3底模" # openi网页的模型名
|
87 |
+
# 训练模型存储目录:与旧版本的区别,原先数据集是存放在logs/model_name下的,现在改为统一存放在Data/你的数据集/models下
|
88 |
+
model: "models"
|
89 |
+
# 配置文件路径
|
90 |
+
config_path: "config.json"
|
91 |
+
# 训练使用的worker,不建议超过CPU核心数
|
92 |
+
num_workers: 16
|
93 |
+
# 关闭此项可以节约接近50%的磁盘空间,但是可能导致实际训练速度变慢和更高的CPU使用率。
|
94 |
+
spec_cache: True
|
95 |
+
# 保存的检查点数量,多于此数目的权重会被删除来节省空间。
|
96 |
+
keep_ckpts: 8
|
97 |
+
|
98 |
+
|
99 |
+
# webui webui配置
|
100 |
+
# 注意, “:” 后需要加空格
|
101 |
+
webui:
|
102 |
+
# 推理设备
|
103 |
+
device: "cuda"
|
104 |
+
# 模型路径
|
105 |
+
model: "models/G_8000.pth"
|
106 |
+
# 配置文件路径
|
107 |
+
config_path: "config.json"
|
108 |
+
# 端口号
|
109 |
+
port: 7860
|
110 |
+
# 是否公开部署,对外网开放
|
111 |
+
share: false
|
112 |
+
# 是否开启debug模式
|
113 |
+
debug: false
|
114 |
+
# 语种识别库,可选langid, fastlid
|
115 |
+
language_identification_library: "langid"
|
116 |
+
|
117 |
+
|
118 |
+
# server-fastapi配置
|
119 |
+
# 注意, “:” 后需要加空格
|
120 |
+
# 注意,本配置下的所有配置均为相对于根目录的路径
|
121 |
+
server:
|
122 |
+
# 端口号
|
123 |
+
port: 5000
|
124 |
+
# 模型默认使用设备:但是当前并没有实现这个配置。
|
125 |
+
device: "cuda"
|
126 |
+
# 需要加载的所有模型的配置,可以填多个模型,也可以不填模型,等网页成功后手动加载模型
|
127 |
+
# 不加载模型的配置格式:删除默认给的两个模型配置,给models赋值 [ ],也就是空列表。参考模型2的speakers 即 models: [ ]
|
128 |
+
# 注意,所有模型都必须正确配置model与config的路径,空路径会导致加载错误。
|
129 |
+
# 也可以不填模型,等网页加载成功后手动填写models。
|
130 |
+
models:
|
131 |
+
- # 模型的路径
|
132 |
+
model: ""
|
133 |
+
# 模型config.json的路径
|
134 |
+
config: ""
|
135 |
+
# 模型使用设备,若填写则会覆盖默认配置
|
136 |
+
device: "cuda"
|
137 |
+
# 模型默认使用的语言
|
138 |
+
language: "ZH"
|
139 |
+
# 模型人物默认参数
|
140 |
+
# 不必填写所有人物,不填的使用默认值
|
141 |
+
# 暂时不用填写,当前尚未实现按人区分配置
|
142 |
+
speakers:
|
143 |
+
- speaker: "科比"
|
144 |
+
sdp_ratio: 0.2
|
145 |
+
noise_scale: 0.6
|
146 |
+
noise_scale_w: 0.8
|
147 |
+
length_scale: 1
|
148 |
+
- speaker: "五条悟"
|
149 |
+
sdp_ratio: 0.3
|
150 |
+
noise_scale: 0.7
|
151 |
+
noise_scale_w: 0.8
|
152 |
+
length_scale: 0.5
|
153 |
+
- speaker: "安倍晋三"
|
154 |
+
sdp_ratio: 0.2
|
155 |
+
noise_scale: 0.6
|
156 |
+
noise_scale_w: 0.8
|
157 |
+
length_scale: 1.2
|
158 |
+
- # 模型的路径
|
159 |
+
model: ""
|
160 |
+
# 模型config.json的路径
|
161 |
+
config: ""
|
162 |
+
# 模型使用设备,若填写则会覆盖默认配置
|
163 |
+
device: "cpu"
|
164 |
+
# 模型默认使用的语言
|
165 |
+
language: "JP"
|
166 |
+
# 模型人物默认参数
|
167 |
+
# 不必填写所有人物,不填的使用默认值
|
168 |
+
speakers: [ ] # 也可以不填
|
169 |
+
|
170 |
+
# 百度翻译开放平台 api配置
|
171 |
+
# api接入文档 https://api.fanyi.baidu.com/doc/21
|
172 |
+
# 请不要在github等网站公开分享你的app id 与 key
|
173 |
+
translate:
|
174 |
+
# 你的APPID
|
175 |
+
"app_key": ""
|
176 |
+
# 你的密钥
|
177 |
+
"secret_key": ""
|
empty_emo.npy
ADDED
Binary file (3.24 kB). View file
|
|
export_onnx.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from onnx_modules import export_onnx
|
2 |
+
import os
|
3 |
+
|
4 |
+
if __name__ == "__main__":
|
5 |
+
export_path = "BertVits2.2PT"
|
6 |
+
model_path = "model\\G_0.pth"
|
7 |
+
config_path = "model\\config.json"
|
8 |
+
novq = False
|
9 |
+
dev = False
|
10 |
+
if not os.path.exists("onnx"):
|
11 |
+
os.makedirs("onnx")
|
12 |
+
if not os.path.exists(f"onnx/{export_path}"):
|
13 |
+
os.makedirs(f"onnx/{export_path}")
|
14 |
+
export_onnx(export_path, model_path, config_path, novq, dev)
|
infer.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
版本管理、兼容推理及模型加载实现。
|
3 |
+
版本说明:
|
4 |
+
1. 版本号与github的release版本号对应,使用哪个release版本训练的模型即对应其版本号
|
5 |
+
2. 请在模型的config.json中显示声明版本号,添加一个字段"version" : "你的版本号"
|
6 |
+
特殊版本说明:
|
7 |
+
1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复
|
8 |
+
2.3:当前版本
|
9 |
+
"""
|
10 |
+
import torch
|
11 |
+
import commons
|
12 |
+
from text import cleaned_text_to_sequence, get_bert
|
13 |
+
|
14 |
+
# from clap_wrapper import get_clap_audio_feature, get_clap_text_feature
|
15 |
+
from text.cleaner import clean_text
|
16 |
+
import utils
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
from models import SynthesizerTrn
|
20 |
+
from text.symbols import symbols
|
21 |
+
|
22 |
+
# from oldVersion.V210.models import SynthesizerTrn as V210SynthesizerTrn
|
23 |
+
# from oldVersion.V210.text import symbols as V210symbols
|
24 |
+
# from oldVersion.V200.models import SynthesizerTrn as V200SynthesizerTrn
|
25 |
+
# from oldVersion.V200.text import symbols as V200symbols
|
26 |
+
# from oldVersion.V111.models import SynthesizerTrn as V111SynthesizerTrn
|
27 |
+
# from oldVersion.V111.text import symbols as V111symbols
|
28 |
+
# from oldVersion.V110.models import SynthesizerTrn as V110SynthesizerTrn
|
29 |
+
# from oldVersion.V110.text import symbols as V110symbols
|
30 |
+
# from oldVersion.V101.models import SynthesizerTrn as V101SynthesizerTrn
|
31 |
+
# from oldVersion.V101.text import symbols as V101symbols
|
32 |
+
|
33 |
+
# from oldVersion import V111, V110, V101, V200, V210
|
34 |
+
|
35 |
+
# 当前版本信息
|
36 |
+
latest_version = "2.3"
|
37 |
+
|
38 |
+
# 版本兼容
|
39 |
+
SynthesizerTrnMap = {
|
40 |
+
# "2.1": V210SynthesizerTrn,
|
41 |
+
# "2.0.2-fix": V200SynthesizerTrn,
|
42 |
+
# "2.0.1": V200SynthesizerTrn,
|
43 |
+
# "2.0": V200SynthesizerTrn,
|
44 |
+
# "1.1.1-fix": V111SynthesizerTrn,
|
45 |
+
# "1.1.1": V111SynthesizerTrn,
|
46 |
+
# "1.1": V110SynthesizerTrn,
|
47 |
+
# "1.1.0": V110SynthesizerTrn,
|
48 |
+
# "1.0.1": V101SynthesizerTrn,
|
49 |
+
# "1.0": V101SynthesizerTrn,
|
50 |
+
# "1.0.0": V101SynthesizerTrn,
|
51 |
+
}
|
52 |
+
|
53 |
+
symbolsMap = {
|
54 |
+
# "2.1": V210symbols,
|
55 |
+
# "2.0.2-fix": V200symbols,
|
56 |
+
# "2.0.1": V200symbols,
|
57 |
+
# "2.0": V200symbols,
|
58 |
+
# "1.1.1-fix": V111symbols,
|
59 |
+
# "1.1.1": V111symbols,
|
60 |
+
# "1.1": V110symbols,
|
61 |
+
# "1.1.0": V110symbols,
|
62 |
+
# "1.0.1": V101symbols,
|
63 |
+
# "1.0": V101symbols,
|
64 |
+
# "1.0.0": V101symbols,
|
65 |
+
}
|
66 |
+
|
67 |
+
|
68 |
+
# def get_emo_(reference_audio, emotion, sid):
|
69 |
+
# emo = (
|
70 |
+
# torch.from_numpy(get_emo(reference_audio))
|
71 |
+
# if reference_audio and emotion == -1
|
72 |
+
# else torch.FloatTensor(
|
73 |
+
# np.load(f"emo_clustering/{sid}/cluster_center_{emotion}.npy")
|
74 |
+
# )
|
75 |
+
# )
|
76 |
+
# return emo
|
77 |
+
|
78 |
+
|
79 |
+
def get_net_g(model_path: str, version: str, device: str, hps):
|
80 |
+
if version != latest_version:
|
81 |
+
net_g = SynthesizerTrnMap[version](
|
82 |
+
len(symbolsMap[version]),
|
83 |
+
hps.data.filter_length // 2 + 1,
|
84 |
+
hps.train.segment_size // hps.data.hop_length,
|
85 |
+
n_speakers=hps.data.n_speakers,
|
86 |
+
**hps.model,
|
87 |
+
).to(device)
|
88 |
+
else:
|
89 |
+
# 当前版本模型 net_g
|
90 |
+
net_g = SynthesizerTrn(
|
91 |
+
len(symbols),
|
92 |
+
hps.data.filter_length // 2 + 1,
|
93 |
+
hps.train.segment_size // hps.data.hop_length,
|
94 |
+
n_speakers=hps.data.n_speakers,
|
95 |
+
**hps.model,
|
96 |
+
).to(device)
|
97 |
+
_ = net_g.eval()
|
98 |
+
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
|
99 |
+
return net_g
|
100 |
+
|
101 |
+
|
102 |
+
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
|
103 |
+
style_text = None if style_text == "" else style_text
|
104 |
+
# 在此处实现当前版本的get_text
|
105 |
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
106 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
107 |
+
|
108 |
+
if hps.data.add_blank:
|
109 |
+
phone = commons.intersperse(phone, 0)
|
110 |
+
tone = commons.intersperse(tone, 0)
|
111 |
+
language = commons.intersperse(language, 0)
|
112 |
+
for i in range(len(word2ph)):
|
113 |
+
word2ph[i] = word2ph[i] * 2
|
114 |
+
word2ph[0] += 1
|
115 |
+
bert_ori = get_bert(
|
116 |
+
norm_text, word2ph, language_str, device, style_text, style_weight
|
117 |
+
)
|
118 |
+
del word2ph
|
119 |
+
assert bert_ori.shape[-1] == len(phone), phone
|
120 |
+
|
121 |
+
if language_str == "ZH":
|
122 |
+
bert = bert_ori
|
123 |
+
ja_bert = torch.randn(1024, len(phone))
|
124 |
+
en_bert = torch.randn(1024, len(phone))
|
125 |
+
elif language_str == "JP":
|
126 |
+
bert = torch.randn(1024, len(phone))
|
127 |
+
ja_bert = bert_ori
|
128 |
+
en_bert = torch.randn(1024, len(phone))
|
129 |
+
elif language_str == "EN":
|
130 |
+
bert = torch.randn(1024, len(phone))
|
131 |
+
ja_bert = torch.randn(1024, len(phone))
|
132 |
+
en_bert = bert_ori
|
133 |
+
else:
|
134 |
+
raise ValueError("language_str should be ZH, JP or EN")
|
135 |
+
|
136 |
+
assert bert.shape[-1] == len(
|
137 |
+
phone
|
138 |
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
139 |
+
|
140 |
+
phone = torch.LongTensor(phone)
|
141 |
+
tone = torch.LongTensor(tone)
|
142 |
+
language = torch.LongTensor(language)
|
143 |
+
return bert, ja_bert, en_bert, phone, tone, language
|
144 |
+
|
145 |
+
|
146 |
+
def infer(
|
147 |
+
text,
|
148 |
+
emotion,
|
149 |
+
sdp_ratio,
|
150 |
+
noise_scale,
|
151 |
+
noise_scale_w,
|
152 |
+
length_scale,
|
153 |
+
sid,
|
154 |
+
language,
|
155 |
+
hps,
|
156 |
+
net_g,
|
157 |
+
device,
|
158 |
+
reference_audio=None,
|
159 |
+
skip_start=False,
|
160 |
+
skip_end=False,
|
161 |
+
style_text=None,
|
162 |
+
style_weight=0.7,
|
163 |
+
):
|
164 |
+
# 2.2版本参数位置变了
|
165 |
+
# 2.1 参数新增 emotion reference_audio skip_start skip_end
|
166 |
+
# inferMap_V3 = {
|
167 |
+
# "2.1": V210.infer,
|
168 |
+
#}
|
169 |
+
# 支持中日英三语版本
|
170 |
+
inferMap_V2 = {
|
171 |
+
# "2.0.2-fix": V200.infer,
|
172 |
+
# "2.0.1": V200.infer,
|
173 |
+
# "2.0": V200.infer,
|
174 |
+
# "1.1.1-fix": V111.infer_fix,
|
175 |
+
# "1.1.1": V111.infer,
|
176 |
+
# "1.1": V110.infer,
|
177 |
+
# "1.1.0": V110.infer,
|
178 |
+
}
|
179 |
+
# 仅支持中文版本
|
180 |
+
# 在测试中,并未发现两个版本的模型不能互相通用
|
181 |
+
inferMap_V1 = {
|
182 |
+
# "1.0.1": V101.infer,
|
183 |
+
# "1.0": V101.infer,
|
184 |
+
# "1.0.0": V101.infer,
|
185 |
+
}
|
186 |
+
version = hps.version if hasattr(hps, "version") else latest_version
|
187 |
+
# 非当前版本,根据版本号选择合适的infer
|
188 |
+
if version != latest_version:
|
189 |
+
if version in inferMap_V3.keys():
|
190 |
+
emotion = 0
|
191 |
+
return inferMap_V3[version](
|
192 |
+
text,
|
193 |
+
sdp_ratio,
|
194 |
+
noise_scale,
|
195 |
+
noise_scale_w,
|
196 |
+
length_scale,
|
197 |
+
sid,
|
198 |
+
language,
|
199 |
+
hps,
|
200 |
+
net_g,
|
201 |
+
device,
|
202 |
+
reference_audio,
|
203 |
+
emotion,
|
204 |
+
skip_start,
|
205 |
+
skip_end,
|
206 |
+
style_text,
|
207 |
+
style_weight,
|
208 |
+
)
|
209 |
+
if version in inferMap_V2.keys():
|
210 |
+
return inferMap_V2[version](
|
211 |
+
text,
|
212 |
+
sdp_ratio,
|
213 |
+
noise_scale,
|
214 |
+
noise_scale_w,
|
215 |
+
length_scale,
|
216 |
+
sid,
|
217 |
+
language,
|
218 |
+
hps,
|
219 |
+
net_g,
|
220 |
+
device,
|
221 |
+
)
|
222 |
+
if version in inferMap_V1.keys():
|
223 |
+
return inferMap_V1[version](
|
224 |
+
text,
|
225 |
+
sdp_ratio,
|
226 |
+
noise_scale,
|
227 |
+
noise_scale_w,
|
228 |
+
length_scale,
|
229 |
+
sid,
|
230 |
+
hps,
|
231 |
+
net_g,
|
232 |
+
device,
|
233 |
+
)
|
234 |
+
# 在此处实现当前版本的推理
|
235 |
+
# emo = get_emo_(reference_audio, emotion, sid)
|
236 |
+
# if isinstance(reference_audio, np.ndarray):
|
237 |
+
# emo = get_clap_audio_feature(reference_audio, device)
|
238 |
+
# else:
|
239 |
+
# emo = get_clap_text_feature(emotion, device)
|
240 |
+
# emo = torch.squeeze(emo, dim=1)
|
241 |
+
|
242 |
+
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
|
243 |
+
text,
|
244 |
+
language,
|
245 |
+
hps,
|
246 |
+
device,
|
247 |
+
style_text=style_text,
|
248 |
+
style_weight=style_weight,
|
249 |
+
)
|
250 |
+
if skip_start:
|
251 |
+
phones = phones[3:]
|
252 |
+
tones = tones[3:]
|
253 |
+
lang_ids = lang_ids[3:]
|
254 |
+
bert = bert[:, 3:]
|
255 |
+
ja_bert = ja_bert[:, 3:]
|
256 |
+
en_bert = en_bert[:, 3:]
|
257 |
+
if skip_end:
|
258 |
+
phones = phones[:-2]
|
259 |
+
tones = tones[:-2]
|
260 |
+
lang_ids = lang_ids[:-2]
|
261 |
+
bert = bert[:, :-2]
|
262 |
+
ja_bert = ja_bert[:, :-2]
|
263 |
+
en_bert = en_bert[:, :-2]
|
264 |
+
with torch.no_grad():
|
265 |
+
x_tst = phones.to(device).unsqueeze(0)
|
266 |
+
tones = tones.to(device).unsqueeze(0)
|
267 |
+
lang_ids = lang_ids.to(device).unsqueeze(0)
|
268 |
+
bert = bert.to(device).unsqueeze(0)
|
269 |
+
ja_bert = ja_bert.to(device).unsqueeze(0)
|
270 |
+
en_bert = en_bert.to(device).unsqueeze(0)
|
271 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
272 |
+
# emo = emo.to(device).unsqueeze(0)
|
273 |
+
del phones
|
274 |
+
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
275 |
+
audio = (
|
276 |
+
net_g.infer(
|
277 |
+
x_tst,
|
278 |
+
x_tst_lengths,
|
279 |
+
speakers,
|
280 |
+
tones,
|
281 |
+
lang_ids,
|
282 |
+
bert,
|
283 |
+
ja_bert,
|
284 |
+
en_bert,
|
285 |
+
sdp_ratio=sdp_ratio,
|
286 |
+
noise_scale=noise_scale,
|
287 |
+
noise_scale_w=noise_scale_w,
|
288 |
+
length_scale=length_scale,
|
289 |
+
)[0][0, 0]
|
290 |
+
.data.cpu()
|
291 |
+
.float()
|
292 |
+
.numpy()
|
293 |
+
)
|
294 |
+
del (
|
295 |
+
x_tst,
|
296 |
+
tones,
|
297 |
+
lang_ids,
|
298 |
+
bert,
|
299 |
+
x_tst_lengths,
|
300 |
+
speakers,
|
301 |
+
ja_bert,
|
302 |
+
en_bert,
|
303 |
+
) # , emo
|
304 |
+
if torch.cuda.is_available():
|
305 |
+
torch.cuda.empty_cache()
|
306 |
+
return audio
|
307 |
+
|
308 |
+
|
309 |
+
def infer_multilang(
|
310 |
+
text,
|
311 |
+
sdp_ratio,
|
312 |
+
noise_scale,
|
313 |
+
noise_scale_w,
|
314 |
+
length_scale,
|
315 |
+
sid,
|
316 |
+
language,
|
317 |
+
hps,
|
318 |
+
net_g,
|
319 |
+
device,
|
320 |
+
reference_audio=None,
|
321 |
+
emotion=None,
|
322 |
+
skip_start=False,
|
323 |
+
skip_end=False,
|
324 |
+
):
|
325 |
+
bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], []
|
326 |
+
# emo = get_emo_(reference_audio, emotion, sid)
|
327 |
+
# if isinstance(reference_audio, np.ndarray):
|
328 |
+
# emo = get_clap_audio_feature(reference_audio, device)
|
329 |
+
# else:
|
330 |
+
# emo = get_clap_text_feature(emotion, device)
|
331 |
+
# emo = torch.squeeze(emo, dim=1)
|
332 |
+
for idx, (txt, lang) in enumerate(zip(text, language)):
|
333 |
+
_skip_start = (idx != 0) or (skip_start and idx == 0)
|
334 |
+
_skip_end = (idx != len(language) - 1) or skip_end
|
335 |
+
(
|
336 |
+
temp_bert,
|
337 |
+
temp_ja_bert,
|
338 |
+
temp_en_bert,
|
339 |
+
temp_phones,
|
340 |
+
temp_tones,
|
341 |
+
temp_lang_ids,
|
342 |
+
) = get_text(txt, lang, hps, device)
|
343 |
+
if _skip_start:
|
344 |
+
temp_bert = temp_bert[:, 3:]
|
345 |
+
temp_ja_bert = temp_ja_bert[:, 3:]
|
346 |
+
temp_en_bert = temp_en_bert[:, 3:]
|
347 |
+
temp_phones = temp_phones[3:]
|
348 |
+
temp_tones = temp_tones[3:]
|
349 |
+
temp_lang_ids = temp_lang_ids[3:]
|
350 |
+
if _skip_end:
|
351 |
+
temp_bert = temp_bert[:, :-2]
|
352 |
+
temp_ja_bert = temp_ja_bert[:, :-2]
|
353 |
+
temp_en_bert = temp_en_bert[:, :-2]
|
354 |
+
temp_phones = temp_phones[:-2]
|
355 |
+
temp_tones = temp_tones[:-2]
|
356 |
+
temp_lang_ids = temp_lang_ids[:-2]
|
357 |
+
bert.append(temp_bert)
|
358 |
+
ja_bert.append(temp_ja_bert)
|
359 |
+
en_bert.append(temp_en_bert)
|
360 |
+
phones.append(temp_phones)
|
361 |
+
tones.append(temp_tones)
|
362 |
+
lang_ids.append(temp_lang_ids)
|
363 |
+
bert = torch.concatenate(bert, dim=1)
|
364 |
+
ja_bert = torch.concatenate(ja_bert, dim=1)
|
365 |
+
en_bert = torch.concatenate(en_bert, dim=1)
|
366 |
+
phones = torch.concatenate(phones, dim=0)
|
367 |
+
tones = torch.concatenate(tones, dim=0)
|
368 |
+
lang_ids = torch.concatenate(lang_ids, dim=0)
|
369 |
+
with torch.no_grad():
|
370 |
+
x_tst = phones.to(device).unsqueeze(0)
|
371 |
+
tones = tones.to(device).unsqueeze(0)
|
372 |
+
lang_ids = lang_ids.to(device).unsqueeze(0)
|
373 |
+
bert = bert.to(device).unsqueeze(0)
|
374 |
+
ja_bert = ja_bert.to(device).unsqueeze(0)
|
375 |
+
en_bert = en_bert.to(device).unsqueeze(0)
|
376 |
+
# emo = emo.to(device).unsqueeze(0)
|
377 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
378 |
+
del phones
|
379 |
+
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
380 |
+
audio = (
|
381 |
+
net_g.infer(
|
382 |
+
x_tst,
|
383 |
+
x_tst_lengths,
|
384 |
+
speakers,
|
385 |
+
tones,
|
386 |
+
lang_ids,
|
387 |
+
bert,
|
388 |
+
ja_bert,
|
389 |
+
en_bert,
|
390 |
+
sdp_ratio=sdp_ratio,
|
391 |
+
noise_scale=noise_scale,
|
392 |
+
noise_scale_w=noise_scale_w,
|
393 |
+
length_scale=length_scale,
|
394 |
+
)[0][0, 0]
|
395 |
+
.data.cpu()
|
396 |
+
.float()
|
397 |
+
.numpy()
|
398 |
+
)
|
399 |
+
del (
|
400 |
+
x_tst,
|
401 |
+
tones,
|
402 |
+
lang_ids,
|
403 |
+
bert,
|
404 |
+
x_tst_lengths,
|
405 |
+
speakers,
|
406 |
+
ja_bert,
|
407 |
+
en_bert,
|
408 |
+
) # , emo
|
409 |
+
if torch.cuda.is_available():
|
410 |
+
torch.cuda.empty_cache()
|
411 |
+
return audio
|
losses.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
from transformers import AutoModel
|
4 |
+
|
5 |
+
|
6 |
+
def feature_loss(fmap_r, fmap_g):
|
7 |
+
loss = 0
|
8 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
9 |
+
for rl, gl in zip(dr, dg):
|
10 |
+
rl = rl.float().detach()
|
11 |
+
gl = gl.float()
|
12 |
+
loss += torch.mean(torch.abs(rl - gl))
|
13 |
+
|
14 |
+
return loss * 2
|
15 |
+
|
16 |
+
|
17 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
18 |
+
loss = 0
|
19 |
+
r_losses = []
|
20 |
+
g_losses = []
|
21 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
22 |
+
dr = dr.float()
|
23 |
+
dg = dg.float()
|
24 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
25 |
+
g_loss = torch.mean(dg**2)
|
26 |
+
loss += r_loss + g_loss
|
27 |
+
r_losses.append(r_loss.item())
|
28 |
+
g_losses.append(g_loss.item())
|
29 |
+
|
30 |
+
return loss, r_losses, g_losses
|
31 |
+
|
32 |
+
|
33 |
+
def generator_loss(disc_outputs):
|
34 |
+
loss = 0
|
35 |
+
gen_losses = []
|
36 |
+
for dg in disc_outputs:
|
37 |
+
dg = dg.float()
|
38 |
+
l = torch.mean((1 - dg) ** 2)
|
39 |
+
gen_losses.append(l)
|
40 |
+
loss += l
|
41 |
+
|
42 |
+
return loss, gen_losses
|
43 |
+
|
44 |
+
|
45 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
46 |
+
"""
|
47 |
+
z_p, logs_q: [b, h, t_t]
|
48 |
+
m_p, logs_p: [b, h, t_t]
|
49 |
+
"""
|
50 |
+
z_p = z_p.float()
|
51 |
+
logs_q = logs_q.float()
|
52 |
+
m_p = m_p.float()
|
53 |
+
logs_p = logs_p.float()
|
54 |
+
z_mask = z_mask.float()
|
55 |
+
|
56 |
+
kl = logs_p - logs_q - 0.5
|
57 |
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
58 |
+
kl = torch.sum(kl * z_mask)
|
59 |
+
l = kl / torch.sum(z_mask)
|
60 |
+
return l
|
61 |
+
|
62 |
+
|
63 |
+
class WavLMLoss(torch.nn.Module):
|
64 |
+
def __init__(self, model, wd, model_sr, slm_sr=16000):
|
65 |
+
super(WavLMLoss, self).__init__()
|
66 |
+
self.wavlm = AutoModel.from_pretrained(model)
|
67 |
+
self.wd = wd
|
68 |
+
self.resample = torchaudio.transforms.Resample(model_sr, slm_sr)
|
69 |
+
self.wavlm.eval()
|
70 |
+
for param in self.wavlm.parameters():
|
71 |
+
param.requires_grad = False
|
72 |
+
|
73 |
+
def forward(self, wav, y_rec):
|
74 |
+
with torch.no_grad():
|
75 |
+
wav_16 = self.resample(wav)
|
76 |
+
wav_embeddings = self.wavlm(
|
77 |
+
input_values=wav_16, output_hidden_states=True
|
78 |
+
).hidden_states
|
79 |
+
y_rec_16 = self.resample(y_rec)
|
80 |
+
y_rec_embeddings = self.wavlm(
|
81 |
+
input_values=y_rec_16.squeeze(), output_hidden_states=True
|
82 |
+
).hidden_states
|
83 |
+
|
84 |
+
floss = 0
|
85 |
+
for er, eg in zip(wav_embeddings, y_rec_embeddings):
|
86 |
+
floss += torch.mean(torch.abs(er - eg))
|
87 |
+
|
88 |
+
return floss.mean()
|
89 |
+
|
90 |
+
def generator(self, y_rec):
|
91 |
+
y_rec_16 = self.resample(y_rec)
|
92 |
+
y_rec_embeddings = self.wavlm(
|
93 |
+
input_values=y_rec_16, output_hidden_states=True
|
94 |
+
).hidden_states
|
95 |
+
y_rec_embeddings = (
|
96 |
+
torch.stack(y_rec_embeddings, dim=1)
|
97 |
+
.transpose(-1, -2)
|
98 |
+
.flatten(start_dim=1, end_dim=2)
|
99 |
+
)
|
100 |
+
y_df_hat_g = self.wd(y_rec_embeddings)
|
101 |
+
loss_gen = torch.mean((1 - y_df_hat_g) ** 2)
|
102 |
+
|
103 |
+
return loss_gen
|
104 |
+
|
105 |
+
def discriminator(self, wav, y_rec):
|
106 |
+
with torch.no_grad():
|
107 |
+
wav_16 = self.resample(wav)
|
108 |
+
wav_embeddings = self.wavlm(
|
109 |
+
input_values=wav_16, output_hidden_states=True
|
110 |
+
).hidden_states
|
111 |
+
y_rec_16 = self.resample(y_rec)
|
112 |
+
y_rec_embeddings = self.wavlm(
|
113 |
+
input_values=y_rec_16, output_hidden_states=True
|
114 |
+
).hidden_states
|
115 |
+
|
116 |
+
y_embeddings = (
|
117 |
+
torch.stack(wav_embeddings, dim=1)
|
118 |
+
.transpose(-1, -2)
|
119 |
+
.flatten(start_dim=1, end_dim=2)
|
120 |
+
)
|
121 |
+
y_rec_embeddings = (
|
122 |
+
torch.stack(y_rec_embeddings, dim=1)
|
123 |
+
.transpose(-1, -2)
|
124 |
+
.flatten(start_dim=1, end_dim=2)
|
125 |
+
)
|
126 |
+
|
127 |
+
y_d_rs = self.wd(y_embeddings)
|
128 |
+
y_d_gs = self.wd(y_rec_embeddings)
|
129 |
+
|
130 |
+
y_df_hat_r, y_df_hat_g = y_d_rs, y_d_gs
|
131 |
+
|
132 |
+
r_loss = torch.mean((1 - y_df_hat_r) ** 2)
|
133 |
+
g_loss = torch.mean((y_df_hat_g) ** 2)
|
134 |
+
|
135 |
+
loss_disc_f = r_loss + g_loss
|
136 |
+
|
137 |
+
return loss_disc_f.mean()
|
138 |
+
|
139 |
+
def discriminator_forward(self, wav):
|
140 |
+
with torch.no_grad():
|
141 |
+
wav_16 = self.resample(wav)
|
142 |
+
wav_embeddings = self.wavlm(
|
143 |
+
input_values=wav_16, output_hidden_states=True
|
144 |
+
).hidden_states
|
145 |
+
y_embeddings = (
|
146 |
+
torch.stack(wav_embeddings, dim=1)
|
147 |
+
.transpose(-1, -2)
|
148 |
+
.flatten(start_dim=1, end_dim=2)
|
149 |
+
)
|
150 |
+
|
151 |
+
y_d_rs = self.wd(y_embeddings)
|
152 |
+
|
153 |
+
return y_d_rs
|
mel_processing.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.utils.data
|
3 |
+
from librosa.filters import mel as librosa_mel_fn
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
# warnings.simplefilter(action='ignore', category=FutureWarning)
|
7 |
+
warnings.filterwarnings(action="ignore")
|
8 |
+
MAX_WAV_VALUE = 32768.0
|
9 |
+
|
10 |
+
|
11 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
12 |
+
"""
|
13 |
+
PARAMS
|
14 |
+
------
|
15 |
+
C: compression factor
|
16 |
+
"""
|
17 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
18 |
+
|
19 |
+
|
20 |
+
def dynamic_range_decompression_torch(x, C=1):
|
21 |
+
"""
|
22 |
+
PARAMS
|
23 |
+
------
|
24 |
+
C: compression factor used to compress
|
25 |
+
"""
|
26 |
+
return torch.exp(x) / C
|
27 |
+
|
28 |
+
|
29 |
+
def spectral_normalize_torch(magnitudes):
|
30 |
+
output = dynamic_range_compression_torch(magnitudes)
|
31 |
+
return output
|
32 |
+
|
33 |
+
|
34 |
+
def spectral_de_normalize_torch(magnitudes):
|
35 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
36 |
+
return output
|
37 |
+
|
38 |
+
|
39 |
+
mel_basis = {}
|
40 |
+
hann_window = {}
|
41 |
+
|
42 |
+
|
43 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
44 |
+
if torch.min(y) < -1.0:
|
45 |
+
print("min value is ", torch.min(y))
|
46 |
+
if torch.max(y) > 1.0:
|
47 |
+
print("max value is ", torch.max(y))
|
48 |
+
|
49 |
+
global hann_window
|
50 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
51 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
52 |
+
if wnsize_dtype_device not in hann_window:
|
53 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
54 |
+
dtype=y.dtype, device=y.device
|
55 |
+
)
|
56 |
+
|
57 |
+
y = torch.nn.functional.pad(
|
58 |
+
y.unsqueeze(1),
|
59 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
60 |
+
mode="reflect",
|
61 |
+
)
|
62 |
+
y = y.squeeze(1)
|
63 |
+
|
64 |
+
spec = torch.stft(
|
65 |
+
y,
|
66 |
+
n_fft,
|
67 |
+
hop_length=hop_size,
|
68 |
+
win_length=win_size,
|
69 |
+
window=hann_window[wnsize_dtype_device],
|
70 |
+
center=center,
|
71 |
+
pad_mode="reflect",
|
72 |
+
normalized=False,
|
73 |
+
onesided=True,
|
74 |
+
return_complex=False,
|
75 |
+
)
|
76 |
+
|
77 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
78 |
+
return spec
|
79 |
+
|
80 |
+
|
81 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
82 |
+
global mel_basis
|
83 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
84 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
85 |
+
if fmax_dtype_device not in mel_basis:
|
86 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
87 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
88 |
+
dtype=spec.dtype, device=spec.device
|
89 |
+
)
|
90 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
91 |
+
spec = spectral_normalize_torch(spec)
|
92 |
+
return spec
|
93 |
+
|
94 |
+
|
95 |
+
def mel_spectrogram_torch(
|
96 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
97 |
+
):
|
98 |
+
if torch.min(y) < -1.0:
|
99 |
+
print("min value is ", torch.min(y))
|
100 |
+
if torch.max(y) > 1.0:
|
101 |
+
print("max value is ", torch.max(y))
|
102 |
+
|
103 |
+
global mel_basis, hann_window
|
104 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
105 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
106 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
107 |
+
if fmax_dtype_device not in mel_basis:
|
108 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
109 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
110 |
+
dtype=y.dtype, device=y.device
|
111 |
+
)
|
112 |
+
if wnsize_dtype_device not in hann_window:
|
113 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
114 |
+
dtype=y.dtype, device=y.device
|
115 |
+
)
|
116 |
+
|
117 |
+
y = torch.nn.functional.pad(
|
118 |
+
y.unsqueeze(1),
|
119 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
120 |
+
mode="reflect",
|
121 |
+
)
|
122 |
+
y = y.squeeze(1)
|
123 |
+
|
124 |
+
spec = torch.stft(
|
125 |
+
y,
|
126 |
+
n_fft,
|
127 |
+
hop_length=hop_size,
|
128 |
+
win_length=win_size,
|
129 |
+
window=hann_window[wnsize_dtype_device],
|
130 |
+
center=center,
|
131 |
+
pad_mode="reflect",
|
132 |
+
normalized=False,
|
133 |
+
onesided=True,
|
134 |
+
return_complex=False,
|
135 |
+
)
|
136 |
+
|
137 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
138 |
+
|
139 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
140 |
+
spec = spectral_normalize_torch(spec)
|
141 |
+
|
142 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,1076 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import modules
|
8 |
+
import attentions
|
9 |
+
import monotonic_align
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
from text import symbols, num_tones, num_languages
|
16 |
+
|
17 |
+
from vector_quantize_pytorch import VectorQuantize
|
18 |
+
|
19 |
+
|
20 |
+
class DurationDiscriminator(nn.Module): # vits2
|
21 |
+
def __init__(
|
22 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
23 |
+
):
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
self.in_channels = in_channels
|
27 |
+
self.filter_channels = filter_channels
|
28 |
+
self.kernel_size = kernel_size
|
29 |
+
self.p_dropout = p_dropout
|
30 |
+
self.gin_channels = gin_channels
|
31 |
+
|
32 |
+
self.drop = nn.Dropout(p_dropout)
|
33 |
+
self.conv_1 = nn.Conv1d(
|
34 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
35 |
+
)
|
36 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
37 |
+
self.conv_2 = nn.Conv1d(
|
38 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
39 |
+
)
|
40 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
41 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
42 |
+
|
43 |
+
self.LSTM = nn.LSTM(
|
44 |
+
2 * filter_channels, filter_channels, batch_first=True, bidirectional=True
|
45 |
+
)
|
46 |
+
|
47 |
+
if gin_channels != 0:
|
48 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
49 |
+
|
50 |
+
self.output_layer = nn.Sequential(
|
51 |
+
nn.Linear(2 * filter_channels, 1), nn.Sigmoid()
|
52 |
+
)
|
53 |
+
|
54 |
+
def forward_probability(self, x, dur):
|
55 |
+
dur = self.dur_proj(dur)
|
56 |
+
x = torch.cat([x, dur], dim=1)
|
57 |
+
x = x.transpose(1, 2)
|
58 |
+
x, _ = self.LSTM(x)
|
59 |
+
output_prob = self.output_layer(x)
|
60 |
+
return output_prob
|
61 |
+
|
62 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
63 |
+
x = torch.detach(x)
|
64 |
+
if g is not None:
|
65 |
+
g = torch.detach(g)
|
66 |
+
x = x + self.cond(g)
|
67 |
+
x = self.conv_1(x * x_mask)
|
68 |
+
x = torch.relu(x)
|
69 |
+
x = self.norm_1(x)
|
70 |
+
x = self.drop(x)
|
71 |
+
x = self.conv_2(x * x_mask)
|
72 |
+
x = torch.relu(x)
|
73 |
+
x = self.norm_2(x)
|
74 |
+
x = self.drop(x)
|
75 |
+
|
76 |
+
output_probs = []
|
77 |
+
for dur in [dur_r, dur_hat]:
|
78 |
+
output_prob = self.forward_probability(x, dur)
|
79 |
+
output_probs.append(output_prob)
|
80 |
+
|
81 |
+
return output_probs
|
82 |
+
|
83 |
+
|
84 |
+
class TransformerCouplingBlock(nn.Module):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
channels,
|
88 |
+
hidden_channels,
|
89 |
+
filter_channels,
|
90 |
+
n_heads,
|
91 |
+
n_layers,
|
92 |
+
kernel_size,
|
93 |
+
p_dropout,
|
94 |
+
n_flows=4,
|
95 |
+
gin_channels=0,
|
96 |
+
share_parameter=False,
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
self.channels = channels
|
100 |
+
self.hidden_channels = hidden_channels
|
101 |
+
self.kernel_size = kernel_size
|
102 |
+
self.n_layers = n_layers
|
103 |
+
self.n_flows = n_flows
|
104 |
+
self.gin_channels = gin_channels
|
105 |
+
|
106 |
+
self.flows = nn.ModuleList()
|
107 |
+
|
108 |
+
self.wn = (
|
109 |
+
attentions.FFT(
|
110 |
+
hidden_channels,
|
111 |
+
filter_channels,
|
112 |
+
n_heads,
|
113 |
+
n_layers,
|
114 |
+
kernel_size,
|
115 |
+
p_dropout,
|
116 |
+
isflow=True,
|
117 |
+
gin_channels=self.gin_channels,
|
118 |
+
)
|
119 |
+
if share_parameter
|
120 |
+
else None
|
121 |
+
)
|
122 |
+
|
123 |
+
for i in range(n_flows):
|
124 |
+
self.flows.append(
|
125 |
+
modules.TransformerCouplingLayer(
|
126 |
+
channels,
|
127 |
+
hidden_channels,
|
128 |
+
kernel_size,
|
129 |
+
n_layers,
|
130 |
+
n_heads,
|
131 |
+
p_dropout,
|
132 |
+
filter_channels,
|
133 |
+
mean_only=True,
|
134 |
+
wn_sharing_parameter=self.wn,
|
135 |
+
gin_channels=self.gin_channels,
|
136 |
+
)
|
137 |
+
)
|
138 |
+
self.flows.append(modules.Flip())
|
139 |
+
|
140 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
141 |
+
if not reverse:
|
142 |
+
for flow in self.flows:
|
143 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
144 |
+
else:
|
145 |
+
for flow in reversed(self.flows):
|
146 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
147 |
+
return x
|
148 |
+
|
149 |
+
|
150 |
+
class StochasticDurationPredictor(nn.Module):
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
in_channels,
|
154 |
+
filter_channels,
|
155 |
+
kernel_size,
|
156 |
+
p_dropout,
|
157 |
+
n_flows=4,
|
158 |
+
gin_channels=0,
|
159 |
+
):
|
160 |
+
super().__init__()
|
161 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
162 |
+
self.in_channels = in_channels
|
163 |
+
self.filter_channels = filter_channels
|
164 |
+
self.kernel_size = kernel_size
|
165 |
+
self.p_dropout = p_dropout
|
166 |
+
self.n_flows = n_flows
|
167 |
+
self.gin_channels = gin_channels
|
168 |
+
|
169 |
+
self.log_flow = modules.Log()
|
170 |
+
self.flows = nn.ModuleList()
|
171 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
172 |
+
for i in range(n_flows):
|
173 |
+
self.flows.append(
|
174 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
175 |
+
)
|
176 |
+
self.flows.append(modules.Flip())
|
177 |
+
|
178 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
179 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
180 |
+
self.post_convs = modules.DDSConv(
|
181 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
182 |
+
)
|
183 |
+
self.post_flows = nn.ModuleList()
|
184 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
185 |
+
for i in range(4):
|
186 |
+
self.post_flows.append(
|
187 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
188 |
+
)
|
189 |
+
self.post_flows.append(modules.Flip())
|
190 |
+
|
191 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
192 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
193 |
+
self.convs = modules.DDSConv(
|
194 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
195 |
+
)
|
196 |
+
if gin_channels != 0:
|
197 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
198 |
+
|
199 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
200 |
+
x = torch.detach(x)
|
201 |
+
x = self.pre(x)
|
202 |
+
if g is not None:
|
203 |
+
g = torch.detach(g)
|
204 |
+
x = x + self.cond(g)
|
205 |
+
x = self.convs(x, x_mask)
|
206 |
+
x = self.proj(x) * x_mask
|
207 |
+
|
208 |
+
if not reverse:
|
209 |
+
flows = self.flows
|
210 |
+
assert w is not None
|
211 |
+
|
212 |
+
logdet_tot_q = 0
|
213 |
+
h_w = self.post_pre(w)
|
214 |
+
h_w = self.post_convs(h_w, x_mask)
|
215 |
+
h_w = self.post_proj(h_w) * x_mask
|
216 |
+
e_q = (
|
217 |
+
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
218 |
+
* x_mask
|
219 |
+
)
|
220 |
+
z_q = e_q
|
221 |
+
for flow in self.post_flows:
|
222 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
223 |
+
logdet_tot_q += logdet_q
|
224 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
225 |
+
u = torch.sigmoid(z_u) * x_mask
|
226 |
+
z0 = (w - u) * x_mask
|
227 |
+
logdet_tot_q += torch.sum(
|
228 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
229 |
+
)
|
230 |
+
logq = (
|
231 |
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
232 |
+
- logdet_tot_q
|
233 |
+
)
|
234 |
+
|
235 |
+
logdet_tot = 0
|
236 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
237 |
+
logdet_tot += logdet
|
238 |
+
z = torch.cat([z0, z1], 1)
|
239 |
+
for flow in flows:
|
240 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
241 |
+
logdet_tot = logdet_tot + logdet
|
242 |
+
nll = (
|
243 |
+
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
244 |
+
- logdet_tot
|
245 |
+
)
|
246 |
+
return nll + logq # [b]
|
247 |
+
else:
|
248 |
+
flows = list(reversed(self.flows))
|
249 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
250 |
+
z = (
|
251 |
+
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
252 |
+
* noise_scale
|
253 |
+
)
|
254 |
+
for flow in flows:
|
255 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
256 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
257 |
+
logw = z0
|
258 |
+
return logw
|
259 |
+
|
260 |
+
|
261 |
+
class DurationPredictor(nn.Module):
|
262 |
+
def __init__(
|
263 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
264 |
+
):
|
265 |
+
super().__init__()
|
266 |
+
|
267 |
+
self.in_channels = in_channels
|
268 |
+
self.filter_channels = filter_channels
|
269 |
+
self.kernel_size = kernel_size
|
270 |
+
self.p_dropout = p_dropout
|
271 |
+
self.gin_channels = gin_channels
|
272 |
+
|
273 |
+
self.drop = nn.Dropout(p_dropout)
|
274 |
+
self.conv_1 = nn.Conv1d(
|
275 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
276 |
+
)
|
277 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
278 |
+
self.conv_2 = nn.Conv1d(
|
279 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
280 |
+
)
|
281 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
282 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
283 |
+
|
284 |
+
if gin_channels != 0:
|
285 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
286 |
+
|
287 |
+
def forward(self, x, x_mask, g=None):
|
288 |
+
x = torch.detach(x)
|
289 |
+
if g is not None:
|
290 |
+
g = torch.detach(g)
|
291 |
+
x = x + self.cond(g)
|
292 |
+
x = self.conv_1(x * x_mask)
|
293 |
+
x = torch.relu(x)
|
294 |
+
x = self.norm_1(x)
|
295 |
+
x = self.drop(x)
|
296 |
+
x = self.conv_2(x * x_mask)
|
297 |
+
x = torch.relu(x)
|
298 |
+
x = self.norm_2(x)
|
299 |
+
x = self.drop(x)
|
300 |
+
x = self.proj(x * x_mask)
|
301 |
+
return x * x_mask
|
302 |
+
|
303 |
+
|
304 |
+
class Bottleneck(nn.Sequential):
|
305 |
+
def __init__(self, in_dim, hidden_dim):
|
306 |
+
c_fc1 = nn.Linear(in_dim, hidden_dim, bias=False)
|
307 |
+
c_fc2 = nn.Linear(in_dim, hidden_dim, bias=False)
|
308 |
+
super().__init__(*[c_fc1, c_fc2])
|
309 |
+
|
310 |
+
|
311 |
+
class Block(nn.Module):
|
312 |
+
def __init__(self, in_dim, hidden_dim) -> None:
|
313 |
+
super().__init__()
|
314 |
+
self.norm = nn.LayerNorm(in_dim)
|
315 |
+
self.mlp = MLP(in_dim, hidden_dim)
|
316 |
+
|
317 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
318 |
+
x = x + self.mlp(self.norm(x))
|
319 |
+
return x
|
320 |
+
|
321 |
+
|
322 |
+
class MLP(nn.Module):
|
323 |
+
def __init__(self, in_dim, hidden_dim):
|
324 |
+
super().__init__()
|
325 |
+
self.c_fc1 = nn.Linear(in_dim, hidden_dim, bias=False)
|
326 |
+
self.c_fc2 = nn.Linear(in_dim, hidden_dim, bias=False)
|
327 |
+
self.c_proj = nn.Linear(hidden_dim, in_dim, bias=False)
|
328 |
+
|
329 |
+
def forward(self, x: torch.Tensor):
|
330 |
+
x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
|
331 |
+
x = self.c_proj(x)
|
332 |
+
return x
|
333 |
+
|
334 |
+
|
335 |
+
class TextEncoder(nn.Module):
|
336 |
+
def __init__(
|
337 |
+
self,
|
338 |
+
n_vocab,
|
339 |
+
out_channels,
|
340 |
+
hidden_channels,
|
341 |
+
filter_channels,
|
342 |
+
n_heads,
|
343 |
+
n_layers,
|
344 |
+
kernel_size,
|
345 |
+
p_dropout,
|
346 |
+
gin_channels=0,
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
self.n_vocab = n_vocab
|
350 |
+
self.out_channels = out_channels
|
351 |
+
self.hidden_channels = hidden_channels
|
352 |
+
self.filter_channels = filter_channels
|
353 |
+
self.n_heads = n_heads
|
354 |
+
self.n_layers = n_layers
|
355 |
+
self.kernel_size = kernel_size
|
356 |
+
self.p_dropout = p_dropout
|
357 |
+
self.gin_channels = gin_channels
|
358 |
+
self.emb = nn.Embedding(len(symbols), hidden_channels)
|
359 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
360 |
+
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
361 |
+
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
362 |
+
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
363 |
+
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
364 |
+
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
365 |
+
self.ja_bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
366 |
+
self.en_bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
367 |
+
|
368 |
+
self.encoder = attentions.Encoder(
|
369 |
+
hidden_channels,
|
370 |
+
filter_channels,
|
371 |
+
n_heads,
|
372 |
+
n_layers,
|
373 |
+
kernel_size,
|
374 |
+
p_dropout,
|
375 |
+
gin_channels=self.gin_channels,
|
376 |
+
)
|
377 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
378 |
+
|
379 |
+
def forward(self, x, x_lengths, tone, language, bert, ja_bert, en_bert, g=None):
|
380 |
+
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
381 |
+
ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
|
382 |
+
en_bert_emb = self.en_bert_proj(en_bert).transpose(1, 2)
|
383 |
+
x = (
|
384 |
+
self.emb(x)
|
385 |
+
+ self.tone_emb(tone)
|
386 |
+
+ self.language_emb(language)
|
387 |
+
+ bert_emb
|
388 |
+
+ ja_bert_emb
|
389 |
+
+ en_bert_emb
|
390 |
+
) * math.sqrt(
|
391 |
+
self.hidden_channels
|
392 |
+
) # [b, t, h]
|
393 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
394 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
395 |
+
x.dtype
|
396 |
+
)
|
397 |
+
|
398 |
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
399 |
+
stats = self.proj(x) * x_mask
|
400 |
+
|
401 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
402 |
+
return x, m, logs, x_mask
|
403 |
+
|
404 |
+
|
405 |
+
class ResidualCouplingBlock(nn.Module):
|
406 |
+
def __init__(
|
407 |
+
self,
|
408 |
+
channels,
|
409 |
+
hidden_channels,
|
410 |
+
kernel_size,
|
411 |
+
dilation_rate,
|
412 |
+
n_layers,
|
413 |
+
n_flows=4,
|
414 |
+
gin_channels=0,
|
415 |
+
):
|
416 |
+
super().__init__()
|
417 |
+
self.channels = channels
|
418 |
+
self.hidden_channels = hidden_channels
|
419 |
+
self.kernel_size = kernel_size
|
420 |
+
self.dilation_rate = dilation_rate
|
421 |
+
self.n_layers = n_layers
|
422 |
+
self.n_flows = n_flows
|
423 |
+
self.gin_channels = gin_channels
|
424 |
+
|
425 |
+
self.flows = nn.ModuleList()
|
426 |
+
for i in range(n_flows):
|
427 |
+
self.flows.append(
|
428 |
+
modules.ResidualCouplingLayer(
|
429 |
+
channels,
|
430 |
+
hidden_channels,
|
431 |
+
kernel_size,
|
432 |
+
dilation_rate,
|
433 |
+
n_layers,
|
434 |
+
gin_channels=gin_channels,
|
435 |
+
mean_only=True,
|
436 |
+
)
|
437 |
+
)
|
438 |
+
self.flows.append(modules.Flip())
|
439 |
+
|
440 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
441 |
+
if not reverse:
|
442 |
+
for flow in self.flows:
|
443 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
444 |
+
else:
|
445 |
+
for flow in reversed(self.flows):
|
446 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
447 |
+
return x
|
448 |
+
|
449 |
+
|
450 |
+
class PosteriorEncoder(nn.Module):
|
451 |
+
def __init__(
|
452 |
+
self,
|
453 |
+
in_channels,
|
454 |
+
out_channels,
|
455 |
+
hidden_channels,
|
456 |
+
kernel_size,
|
457 |
+
dilation_rate,
|
458 |
+
n_layers,
|
459 |
+
gin_channels=0,
|
460 |
+
):
|
461 |
+
super().__init__()
|
462 |
+
self.in_channels = in_channels
|
463 |
+
self.out_channels = out_channels
|
464 |
+
self.hidden_channels = hidden_channels
|
465 |
+
self.kernel_size = kernel_size
|
466 |
+
self.dilation_rate = dilation_rate
|
467 |
+
self.n_layers = n_layers
|
468 |
+
self.gin_channels = gin_channels
|
469 |
+
|
470 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
471 |
+
self.enc = modules.WN(
|
472 |
+
hidden_channels,
|
473 |
+
kernel_size,
|
474 |
+
dilation_rate,
|
475 |
+
n_layers,
|
476 |
+
gin_channels=gin_channels,
|
477 |
+
)
|
478 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
479 |
+
|
480 |
+
def forward(self, x, x_lengths, g=None):
|
481 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
482 |
+
x.dtype
|
483 |
+
)
|
484 |
+
x = self.pre(x) * x_mask
|
485 |
+
x = self.enc(x, x_mask, g=g)
|
486 |
+
stats = self.proj(x) * x_mask
|
487 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
488 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
489 |
+
return z, m, logs, x_mask
|
490 |
+
|
491 |
+
|
492 |
+
class Generator(torch.nn.Module):
|
493 |
+
def __init__(
|
494 |
+
self,
|
495 |
+
initial_channel,
|
496 |
+
resblock,
|
497 |
+
resblock_kernel_sizes,
|
498 |
+
resblock_dilation_sizes,
|
499 |
+
upsample_rates,
|
500 |
+
upsample_initial_channel,
|
501 |
+
upsample_kernel_sizes,
|
502 |
+
gin_channels=0,
|
503 |
+
):
|
504 |
+
super(Generator, self).__init__()
|
505 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
506 |
+
self.num_upsamples = len(upsample_rates)
|
507 |
+
self.conv_pre = Conv1d(
|
508 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
509 |
+
)
|
510 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
511 |
+
|
512 |
+
self.ups = nn.ModuleList()
|
513 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
514 |
+
self.ups.append(
|
515 |
+
weight_norm(
|
516 |
+
ConvTranspose1d(
|
517 |
+
upsample_initial_channel // (2**i),
|
518 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
519 |
+
k,
|
520 |
+
u,
|
521 |
+
padding=(k - u) // 2,
|
522 |
+
)
|
523 |
+
)
|
524 |
+
)
|
525 |
+
|
526 |
+
self.resblocks = nn.ModuleList()
|
527 |
+
for i in range(len(self.ups)):
|
528 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
529 |
+
for j, (k, d) in enumerate(
|
530 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
531 |
+
):
|
532 |
+
self.resblocks.append(resblock(ch, k, d))
|
533 |
+
|
534 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
535 |
+
self.ups.apply(init_weights)
|
536 |
+
|
537 |
+
if gin_channels != 0:
|
538 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
539 |
+
|
540 |
+
def forward(self, x, g=None):
|
541 |
+
x = self.conv_pre(x)
|
542 |
+
if g is not None:
|
543 |
+
x = x + self.cond(g)
|
544 |
+
|
545 |
+
for i in range(self.num_upsamples):
|
546 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
547 |
+
x = self.ups[i](x)
|
548 |
+
xs = None
|
549 |
+
for j in range(self.num_kernels):
|
550 |
+
if xs is None:
|
551 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
552 |
+
else:
|
553 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
554 |
+
x = xs / self.num_kernels
|
555 |
+
x = F.leaky_relu(x)
|
556 |
+
x = self.conv_post(x)
|
557 |
+
x = torch.tanh(x)
|
558 |
+
|
559 |
+
return x
|
560 |
+
|
561 |
+
def remove_weight_norm(self):
|
562 |
+
print("Removing weight norm...")
|
563 |
+
for layer in self.ups:
|
564 |
+
remove_weight_norm(layer)
|
565 |
+
for layer in self.resblocks:
|
566 |
+
layer.remove_weight_norm()
|
567 |
+
|
568 |
+
|
569 |
+
class DiscriminatorP(torch.nn.Module):
|
570 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
571 |
+
super(DiscriminatorP, self).__init__()
|
572 |
+
self.period = period
|
573 |
+
self.use_spectral_norm = use_spectral_norm
|
574 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
575 |
+
self.convs = nn.ModuleList(
|
576 |
+
[
|
577 |
+
norm_f(
|
578 |
+
Conv2d(
|
579 |
+
1,
|
580 |
+
32,
|
581 |
+
(kernel_size, 1),
|
582 |
+
(stride, 1),
|
583 |
+
padding=(get_padding(kernel_size, 1), 0),
|
584 |
+
)
|
585 |
+
),
|
586 |
+
norm_f(
|
587 |
+
Conv2d(
|
588 |
+
32,
|
589 |
+
128,
|
590 |
+
(kernel_size, 1),
|
591 |
+
(stride, 1),
|
592 |
+
padding=(get_padding(kernel_size, 1), 0),
|
593 |
+
)
|
594 |
+
),
|
595 |
+
norm_f(
|
596 |
+
Conv2d(
|
597 |
+
128,
|
598 |
+
512,
|
599 |
+
(kernel_size, 1),
|
600 |
+
(stride, 1),
|
601 |
+
padding=(get_padding(kernel_size, 1), 0),
|
602 |
+
)
|
603 |
+
),
|
604 |
+
norm_f(
|
605 |
+
Conv2d(
|
606 |
+
512,
|
607 |
+
1024,
|
608 |
+
(kernel_size, 1),
|
609 |
+
(stride, 1),
|
610 |
+
padding=(get_padding(kernel_size, 1), 0),
|
611 |
+
)
|
612 |
+
),
|
613 |
+
norm_f(
|
614 |
+
Conv2d(
|
615 |
+
1024,
|
616 |
+
1024,
|
617 |
+
(kernel_size, 1),
|
618 |
+
1,
|
619 |
+
padding=(get_padding(kernel_size, 1), 0),
|
620 |
+
)
|
621 |
+
),
|
622 |
+
]
|
623 |
+
)
|
624 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
625 |
+
|
626 |
+
def forward(self, x):
|
627 |
+
fmap = []
|
628 |
+
|
629 |
+
# 1d to 2d
|
630 |
+
b, c, t = x.shape
|
631 |
+
if t % self.period != 0: # pad first
|
632 |
+
n_pad = self.period - (t % self.period)
|
633 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
634 |
+
t = t + n_pad
|
635 |
+
x = x.view(b, c, t // self.period, self.period)
|
636 |
+
|
637 |
+
for layer in self.convs:
|
638 |
+
x = layer(x)
|
639 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
640 |
+
fmap.append(x)
|
641 |
+
x = self.conv_post(x)
|
642 |
+
fmap.append(x)
|
643 |
+
x = torch.flatten(x, 1, -1)
|
644 |
+
|
645 |
+
return x, fmap
|
646 |
+
|
647 |
+
|
648 |
+
class DiscriminatorS(torch.nn.Module):
|
649 |
+
def __init__(self, use_spectral_norm=False):
|
650 |
+
super(DiscriminatorS, self).__init__()
|
651 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
652 |
+
self.convs = nn.ModuleList(
|
653 |
+
[
|
654 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
655 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
656 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
657 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
658 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
659 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
660 |
+
]
|
661 |
+
)
|
662 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
663 |
+
|
664 |
+
def forward(self, x):
|
665 |
+
fmap = []
|
666 |
+
|
667 |
+
for layer in self.convs:
|
668 |
+
x = layer(x)
|
669 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
670 |
+
fmap.append(x)
|
671 |
+
x = self.conv_post(x)
|
672 |
+
fmap.append(x)
|
673 |
+
x = torch.flatten(x, 1, -1)
|
674 |
+
|
675 |
+
return x, fmap
|
676 |
+
|
677 |
+
|
678 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
679 |
+
def __init__(self, use_spectral_norm=False):
|
680 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
681 |
+
periods = [2, 3, 5, 7, 11]
|
682 |
+
|
683 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
684 |
+
discs = discs + [
|
685 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
686 |
+
]
|
687 |
+
self.discriminators = nn.ModuleList(discs)
|
688 |
+
|
689 |
+
def forward(self, y, y_hat):
|
690 |
+
y_d_rs = []
|
691 |
+
y_d_gs = []
|
692 |
+
fmap_rs = []
|
693 |
+
fmap_gs = []
|
694 |
+
for i, d in enumerate(self.discriminators):
|
695 |
+
y_d_r, fmap_r = d(y)
|
696 |
+
y_d_g, fmap_g = d(y_hat)
|
697 |
+
y_d_rs.append(y_d_r)
|
698 |
+
y_d_gs.append(y_d_g)
|
699 |
+
fmap_rs.append(fmap_r)
|
700 |
+
fmap_gs.append(fmap_g)
|
701 |
+
|
702 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
703 |
+
|
704 |
+
|
705 |
+
class WavLMDiscriminator(nn.Module):
|
706 |
+
"""docstring for Discriminator."""
|
707 |
+
|
708 |
+
def __init__(
|
709 |
+
self, slm_hidden=768, slm_layers=13, initial_channel=64, use_spectral_norm=False
|
710 |
+
):
|
711 |
+
super(WavLMDiscriminator, self).__init__()
|
712 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
713 |
+
self.pre = norm_f(
|
714 |
+
Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0)
|
715 |
+
)
|
716 |
+
|
717 |
+
self.convs = nn.ModuleList(
|
718 |
+
[
|
719 |
+
norm_f(
|
720 |
+
nn.Conv1d(
|
721 |
+
initial_channel, initial_channel * 2, kernel_size=5, padding=2
|
722 |
+
)
|
723 |
+
),
|
724 |
+
norm_f(
|
725 |
+
nn.Conv1d(
|
726 |
+
initial_channel * 2,
|
727 |
+
initial_channel * 4,
|
728 |
+
kernel_size=5,
|
729 |
+
padding=2,
|
730 |
+
)
|
731 |
+
),
|
732 |
+
norm_f(
|
733 |
+
nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2)
|
734 |
+
),
|
735 |
+
]
|
736 |
+
)
|
737 |
+
|
738 |
+
self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1))
|
739 |
+
|
740 |
+
def forward(self, x):
|
741 |
+
x = self.pre(x)
|
742 |
+
|
743 |
+
fmap = []
|
744 |
+
for l in self.convs:
|
745 |
+
x = l(x)
|
746 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
747 |
+
fmap.append(x)
|
748 |
+
x = self.conv_post(x)
|
749 |
+
x = torch.flatten(x, 1, -1)
|
750 |
+
|
751 |
+
return x
|
752 |
+
|
753 |
+
|
754 |
+
class ReferenceEncoder(nn.Module):
|
755 |
+
"""
|
756 |
+
inputs --- [N, Ty/r, n_mels*r] mels
|
757 |
+
outputs --- [N, ref_enc_gru_size]
|
758 |
+
"""
|
759 |
+
|
760 |
+
def __init__(self, spec_channels, gin_channels=0):
|
761 |
+
super().__init__()
|
762 |
+
self.spec_channels = spec_channels
|
763 |
+
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
764 |
+
K = len(ref_enc_filters)
|
765 |
+
filters = [1] + ref_enc_filters
|
766 |
+
convs = [
|
767 |
+
weight_norm(
|
768 |
+
nn.Conv2d(
|
769 |
+
in_channels=filters[i],
|
770 |
+
out_channels=filters[i + 1],
|
771 |
+
kernel_size=(3, 3),
|
772 |
+
stride=(2, 2),
|
773 |
+
padding=(1, 1),
|
774 |
+
)
|
775 |
+
)
|
776 |
+
for i in range(K)
|
777 |
+
]
|
778 |
+
self.convs = nn.ModuleList(convs)
|
779 |
+
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
|
780 |
+
|
781 |
+
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
782 |
+
self.gru = nn.GRU(
|
783 |
+
input_size=ref_enc_filters[-1] * out_channels,
|
784 |
+
hidden_size=256 // 2,
|
785 |
+
batch_first=True,
|
786 |
+
)
|
787 |
+
self.proj = nn.Linear(128, gin_channels)
|
788 |
+
|
789 |
+
def forward(self, inputs, mask=None):
|
790 |
+
N = inputs.size(0)
|
791 |
+
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
792 |
+
for conv in self.convs:
|
793 |
+
out = conv(out)
|
794 |
+
# out = wn(out)
|
795 |
+
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
796 |
+
|
797 |
+
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
798 |
+
T = out.size(1)
|
799 |
+
N = out.size(0)
|
800 |
+
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
801 |
+
|
802 |
+
self.gru.flatten_parameters()
|
803 |
+
memory, out = self.gru(out) # out --- [1, N, 128]
|
804 |
+
|
805 |
+
return self.proj(out.squeeze(0))
|
806 |
+
|
807 |
+
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
808 |
+
for i in range(n_convs):
|
809 |
+
L = (L - kernel_size + 2 * pad) // stride + 1
|
810 |
+
return L
|
811 |
+
|
812 |
+
|
813 |
+
class SynthesizerTrn(nn.Module):
|
814 |
+
"""
|
815 |
+
Synthesizer for Training
|
816 |
+
"""
|
817 |
+
|
818 |
+
def __init__(
|
819 |
+
self,
|
820 |
+
n_vocab,
|
821 |
+
spec_channels,
|
822 |
+
segment_size,
|
823 |
+
inter_channels,
|
824 |
+
hidden_channels,
|
825 |
+
filter_channels,
|
826 |
+
n_heads,
|
827 |
+
n_layers,
|
828 |
+
kernel_size,
|
829 |
+
p_dropout,
|
830 |
+
resblock,
|
831 |
+
resblock_kernel_sizes,
|
832 |
+
resblock_dilation_sizes,
|
833 |
+
upsample_rates,
|
834 |
+
upsample_initial_channel,
|
835 |
+
upsample_kernel_sizes,
|
836 |
+
n_speakers=256,
|
837 |
+
gin_channels=256,
|
838 |
+
use_sdp=True,
|
839 |
+
n_flow_layer=4,
|
840 |
+
n_layers_trans_flow=4,
|
841 |
+
flow_share_parameter=False,
|
842 |
+
use_transformer_flow=True,
|
843 |
+
**kwargs
|
844 |
+
):
|
845 |
+
super().__init__()
|
846 |
+
self.n_vocab = n_vocab
|
847 |
+
self.spec_channels = spec_channels
|
848 |
+
self.inter_channels = inter_channels
|
849 |
+
self.hidden_channels = hidden_channels
|
850 |
+
self.filter_channels = filter_channels
|
851 |
+
self.n_heads = n_heads
|
852 |
+
self.n_layers = n_layers
|
853 |
+
self.kernel_size = kernel_size
|
854 |
+
self.p_dropout = p_dropout
|
855 |
+
self.resblock = resblock
|
856 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
857 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
858 |
+
self.upsample_rates = upsample_rates
|
859 |
+
self.upsample_initial_channel = upsample_initial_channel
|
860 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
861 |
+
self.segment_size = segment_size
|
862 |
+
self.n_speakers = n_speakers
|
863 |
+
self.gin_channels = gin_channels
|
864 |
+
self.n_layers_trans_flow = n_layers_trans_flow
|
865 |
+
self.use_spk_conditioned_encoder = kwargs.get(
|
866 |
+
"use_spk_conditioned_encoder", True
|
867 |
+
)
|
868 |
+
self.use_sdp = use_sdp
|
869 |
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
870 |
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
871 |
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
872 |
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
873 |
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
874 |
+
self.enc_gin_channels = gin_channels
|
875 |
+
self.enc_p = TextEncoder(
|
876 |
+
n_vocab,
|
877 |
+
inter_channels,
|
878 |
+
hidden_channels,
|
879 |
+
filter_channels,
|
880 |
+
n_heads,
|
881 |
+
n_layers,
|
882 |
+
kernel_size,
|
883 |
+
p_dropout,
|
884 |
+
gin_channels=self.enc_gin_channels,
|
885 |
+
)
|
886 |
+
self.dec = Generator(
|
887 |
+
inter_channels,
|
888 |
+
resblock,
|
889 |
+
resblock_kernel_sizes,
|
890 |
+
resblock_dilation_sizes,
|
891 |
+
upsample_rates,
|
892 |
+
upsample_initial_channel,
|
893 |
+
upsample_kernel_sizes,
|
894 |
+
gin_channels=gin_channels,
|
895 |
+
)
|
896 |
+
self.enc_q = PosteriorEncoder(
|
897 |
+
spec_channels,
|
898 |
+
inter_channels,
|
899 |
+
hidden_channels,
|
900 |
+
5,
|
901 |
+
1,
|
902 |
+
16,
|
903 |
+
gin_channels=gin_channels,
|
904 |
+
)
|
905 |
+
if use_transformer_flow:
|
906 |
+
self.flow = TransformerCouplingBlock(
|
907 |
+
inter_channels,
|
908 |
+
hidden_channels,
|
909 |
+
filter_channels,
|
910 |
+
n_heads,
|
911 |
+
n_layers_trans_flow,
|
912 |
+
5,
|
913 |
+
p_dropout,
|
914 |
+
n_flow_layer,
|
915 |
+
gin_channels=gin_channels,
|
916 |
+
share_parameter=flow_share_parameter,
|
917 |
+
)
|
918 |
+
else:
|
919 |
+
self.flow = ResidualCouplingBlock(
|
920 |
+
inter_channels,
|
921 |
+
hidden_channels,
|
922 |
+
5,
|
923 |
+
1,
|
924 |
+
n_flow_layer,
|
925 |
+
gin_channels=gin_channels,
|
926 |
+
)
|
927 |
+
self.sdp = StochasticDurationPredictor(
|
928 |
+
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
929 |
+
)
|
930 |
+
self.dp = DurationPredictor(
|
931 |
+
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
932 |
+
)
|
933 |
+
|
934 |
+
if n_speakers >= 1:
|
935 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
936 |
+
else:
|
937 |
+
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
|
938 |
+
|
939 |
+
def forward(
|
940 |
+
self,
|
941 |
+
x,
|
942 |
+
x_lengths,
|
943 |
+
y,
|
944 |
+
y_lengths,
|
945 |
+
sid,
|
946 |
+
tone,
|
947 |
+
language,
|
948 |
+
bert,
|
949 |
+
ja_bert,
|
950 |
+
en_bert,
|
951 |
+
):
|
952 |
+
if self.n_speakers > 0:
|
953 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
954 |
+
else:
|
955 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
956 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
957 |
+
x, x_lengths, tone, language, bert, ja_bert, en_bert, g=g
|
958 |
+
)
|
959 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
960 |
+
z_p = self.flow(z, y_mask, g=g)
|
961 |
+
|
962 |
+
with torch.no_grad():
|
963 |
+
# negative cross-entropy
|
964 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
965 |
+
neg_cent1 = torch.sum(
|
966 |
+
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
967 |
+
) # [b, 1, t_s]
|
968 |
+
neg_cent2 = torch.matmul(
|
969 |
+
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
970 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
971 |
+
neg_cent3 = torch.matmul(
|
972 |
+
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
973 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
974 |
+
neg_cent4 = torch.sum(
|
975 |
+
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
976 |
+
) # [b, 1, t_s]
|
977 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
978 |
+
if self.use_noise_scaled_mas:
|
979 |
+
epsilon = (
|
980 |
+
torch.std(neg_cent)
|
981 |
+
* torch.randn_like(neg_cent)
|
982 |
+
* self.current_mas_noise_scale
|
983 |
+
)
|
984 |
+
neg_cent = neg_cent + epsilon
|
985 |
+
|
986 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
987 |
+
attn = (
|
988 |
+
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
989 |
+
.unsqueeze(1)
|
990 |
+
.detach()
|
991 |
+
)
|
992 |
+
|
993 |
+
w = attn.sum(2)
|
994 |
+
|
995 |
+
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
996 |
+
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
997 |
+
|
998 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
999 |
+
logw = self.dp(x, x_mask, g=g)
|
1000 |
+
logw_sdp = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=1.0)
|
1001 |
+
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
1002 |
+
x_mask
|
1003 |
+
) # for averaging
|
1004 |
+
l_length_sdp += torch.sum((logw_sdp - logw_) ** 2, [1, 2]) / torch.sum(x_mask)
|
1005 |
+
|
1006 |
+
l_length = l_length_dp + l_length_sdp
|
1007 |
+
|
1008 |
+
# expand prior
|
1009 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
1010 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
1011 |
+
|
1012 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
1013 |
+
z, y_lengths, self.segment_size
|
1014 |
+
)
|
1015 |
+
o = self.dec(z_slice, g=g)
|
1016 |
+
return (
|
1017 |
+
o,
|
1018 |
+
l_length,
|
1019 |
+
attn,
|
1020 |
+
ids_slice,
|
1021 |
+
x_mask,
|
1022 |
+
y_mask,
|
1023 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
1024 |
+
(x, logw, logw_, logw_sdp),
|
1025 |
+
g,
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
def infer(
|
1029 |
+
self,
|
1030 |
+
x,
|
1031 |
+
x_lengths,
|
1032 |
+
sid,
|
1033 |
+
tone,
|
1034 |
+
language,
|
1035 |
+
bert,
|
1036 |
+
ja_bert,
|
1037 |
+
en_bert,
|
1038 |
+
noise_scale=0.667,
|
1039 |
+
length_scale=1,
|
1040 |
+
noise_scale_w=0.8,
|
1041 |
+
max_len=None,
|
1042 |
+
sdp_ratio=0,
|
1043 |
+
y=None,
|
1044 |
+
):
|
1045 |
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
|
1046 |
+
# g = self.gst(y)
|
1047 |
+
if self.n_speakers > 0:
|
1048 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
1049 |
+
else:
|
1050 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
1051 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
1052 |
+
x, x_lengths, tone, language, bert, ja_bert, en_bert, g=g
|
1053 |
+
)
|
1054 |
+
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
1055 |
+
sdp_ratio
|
1056 |
+
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
1057 |
+
w = torch.exp(logw) * x_mask * length_scale
|
1058 |
+
w_ceil = torch.ceil(w)
|
1059 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
1060 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
1061 |
+
x_mask.dtype
|
1062 |
+
)
|
1063 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
1064 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
1065 |
+
|
1066 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
1067 |
+
1, 2
|
1068 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
1069 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
1070 |
+
1, 2
|
1071 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
1072 |
+
|
1073 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
1074 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
1075 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
1076 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
modules.py
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from commons import init_weights, get_padding
|
11 |
+
from transforms import piecewise_rational_quadratic_transform
|
12 |
+
from attentions import Encoder
|
13 |
+
|
14 |
+
LRELU_SLOPE = 0.1
|
15 |
+
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, channels, eps=1e-5):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.eps = eps
|
22 |
+
|
23 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
24 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = x.transpose(1, -1)
|
28 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
29 |
+
return x.transpose(1, -1)
|
30 |
+
|
31 |
+
|
32 |
+
class ConvReluNorm(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
in_channels,
|
36 |
+
hidden_channels,
|
37 |
+
out_channels,
|
38 |
+
kernel_size,
|
39 |
+
n_layers,
|
40 |
+
p_dropout,
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
self.in_channels = in_channels
|
44 |
+
self.hidden_channels = hidden_channels
|
45 |
+
self.out_channels = out_channels
|
46 |
+
self.kernel_size = kernel_size
|
47 |
+
self.n_layers = n_layers
|
48 |
+
self.p_dropout = p_dropout
|
49 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
50 |
+
|
51 |
+
self.conv_layers = nn.ModuleList()
|
52 |
+
self.norm_layers = nn.ModuleList()
|
53 |
+
self.conv_layers.append(
|
54 |
+
nn.Conv1d(
|
55 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
56 |
+
)
|
57 |
+
)
|
58 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
59 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
60 |
+
for _ in range(n_layers - 1):
|
61 |
+
self.conv_layers.append(
|
62 |
+
nn.Conv1d(
|
63 |
+
hidden_channels,
|
64 |
+
hidden_channels,
|
65 |
+
kernel_size,
|
66 |
+
padding=kernel_size // 2,
|
67 |
+
)
|
68 |
+
)
|
69 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
70 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
71 |
+
self.proj.weight.data.zero_()
|
72 |
+
self.proj.bias.data.zero_()
|
73 |
+
|
74 |
+
def forward(self, x, x_mask):
|
75 |
+
x_org = x
|
76 |
+
for i in range(self.n_layers):
|
77 |
+
x = self.conv_layers[i](x * x_mask)
|
78 |
+
x = self.norm_layers[i](x)
|
79 |
+
x = self.relu_drop(x)
|
80 |
+
x = x_org + self.proj(x)
|
81 |
+
return x * x_mask
|
82 |
+
|
83 |
+
|
84 |
+
class DDSConv(nn.Module):
|
85 |
+
"""
|
86 |
+
Dialted and Depth-Separable Convolution
|
87 |
+
"""
|
88 |
+
|
89 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
90 |
+
super().__init__()
|
91 |
+
self.channels = channels
|
92 |
+
self.kernel_size = kernel_size
|
93 |
+
self.n_layers = n_layers
|
94 |
+
self.p_dropout = p_dropout
|
95 |
+
|
96 |
+
self.drop = nn.Dropout(p_dropout)
|
97 |
+
self.convs_sep = nn.ModuleList()
|
98 |
+
self.convs_1x1 = nn.ModuleList()
|
99 |
+
self.norms_1 = nn.ModuleList()
|
100 |
+
self.norms_2 = nn.ModuleList()
|
101 |
+
for i in range(n_layers):
|
102 |
+
dilation = kernel_size**i
|
103 |
+
padding = (kernel_size * dilation - dilation) // 2
|
104 |
+
self.convs_sep.append(
|
105 |
+
nn.Conv1d(
|
106 |
+
channels,
|
107 |
+
channels,
|
108 |
+
kernel_size,
|
109 |
+
groups=channels,
|
110 |
+
dilation=dilation,
|
111 |
+
padding=padding,
|
112 |
+
)
|
113 |
+
)
|
114 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
115 |
+
self.norms_1.append(LayerNorm(channels))
|
116 |
+
self.norms_2.append(LayerNorm(channels))
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, g=None):
|
119 |
+
if g is not None:
|
120 |
+
x = x + g
|
121 |
+
for i in range(self.n_layers):
|
122 |
+
y = self.convs_sep[i](x * x_mask)
|
123 |
+
y = self.norms_1[i](y)
|
124 |
+
y = F.gelu(y)
|
125 |
+
y = self.convs_1x1[i](y)
|
126 |
+
y = self.norms_2[i](y)
|
127 |
+
y = F.gelu(y)
|
128 |
+
y = self.drop(y)
|
129 |
+
x = x + y
|
130 |
+
return x * x_mask
|
131 |
+
|
132 |
+
|
133 |
+
class WN(torch.nn.Module):
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
dilation_rate,
|
139 |
+
n_layers,
|
140 |
+
gin_channels=0,
|
141 |
+
p_dropout=0,
|
142 |
+
):
|
143 |
+
super(WN, self).__init__()
|
144 |
+
assert kernel_size % 2 == 1
|
145 |
+
self.hidden_channels = hidden_channels
|
146 |
+
self.kernel_size = (kernel_size,)
|
147 |
+
self.dilation_rate = dilation_rate
|
148 |
+
self.n_layers = n_layers
|
149 |
+
self.gin_channels = gin_channels
|
150 |
+
self.p_dropout = p_dropout
|
151 |
+
|
152 |
+
self.in_layers = torch.nn.ModuleList()
|
153 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
154 |
+
self.drop = nn.Dropout(p_dropout)
|
155 |
+
|
156 |
+
if gin_channels != 0:
|
157 |
+
cond_layer = torch.nn.Conv1d(
|
158 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
159 |
+
)
|
160 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
161 |
+
|
162 |
+
for i in range(n_layers):
|
163 |
+
dilation = dilation_rate**i
|
164 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
165 |
+
in_layer = torch.nn.Conv1d(
|
166 |
+
hidden_channels,
|
167 |
+
2 * hidden_channels,
|
168 |
+
kernel_size,
|
169 |
+
dilation=dilation,
|
170 |
+
padding=padding,
|
171 |
+
)
|
172 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
173 |
+
self.in_layers.append(in_layer)
|
174 |
+
|
175 |
+
# last one is not necessary
|
176 |
+
if i < n_layers - 1:
|
177 |
+
res_skip_channels = 2 * hidden_channels
|
178 |
+
else:
|
179 |
+
res_skip_channels = hidden_channels
|
180 |
+
|
181 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
182 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
183 |
+
self.res_skip_layers.append(res_skip_layer)
|
184 |
+
|
185 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
186 |
+
output = torch.zeros_like(x)
|
187 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
188 |
+
|
189 |
+
if g is not None:
|
190 |
+
g = self.cond_layer(g)
|
191 |
+
|
192 |
+
for i in range(self.n_layers):
|
193 |
+
x_in = self.in_layers[i](x)
|
194 |
+
if g is not None:
|
195 |
+
cond_offset = i * 2 * self.hidden_channels
|
196 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
197 |
+
else:
|
198 |
+
g_l = torch.zeros_like(x_in)
|
199 |
+
|
200 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
201 |
+
acts = self.drop(acts)
|
202 |
+
|
203 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
204 |
+
if i < self.n_layers - 1:
|
205 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
206 |
+
x = (x + res_acts) * x_mask
|
207 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
208 |
+
else:
|
209 |
+
output = output + res_skip_acts
|
210 |
+
return output * x_mask
|
211 |
+
|
212 |
+
def remove_weight_norm(self):
|
213 |
+
if self.gin_channels != 0:
|
214 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
215 |
+
for l in self.in_layers:
|
216 |
+
torch.nn.utils.remove_weight_norm(l)
|
217 |
+
for l in self.res_skip_layers:
|
218 |
+
torch.nn.utils.remove_weight_norm(l)
|
219 |
+
|
220 |
+
|
221 |
+
class ResBlock1(torch.nn.Module):
|
222 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
223 |
+
super(ResBlock1, self).__init__()
|
224 |
+
self.convs1 = nn.ModuleList(
|
225 |
+
[
|
226 |
+
weight_norm(
|
227 |
+
Conv1d(
|
228 |
+
channels,
|
229 |
+
channels,
|
230 |
+
kernel_size,
|
231 |
+
1,
|
232 |
+
dilation=dilation[0],
|
233 |
+
padding=get_padding(kernel_size, dilation[0]),
|
234 |
+
)
|
235 |
+
),
|
236 |
+
weight_norm(
|
237 |
+
Conv1d(
|
238 |
+
channels,
|
239 |
+
channels,
|
240 |
+
kernel_size,
|
241 |
+
1,
|
242 |
+
dilation=dilation[1],
|
243 |
+
padding=get_padding(kernel_size, dilation[1]),
|
244 |
+
)
|
245 |
+
),
|
246 |
+
weight_norm(
|
247 |
+
Conv1d(
|
248 |
+
channels,
|
249 |
+
channels,
|
250 |
+
kernel_size,
|
251 |
+
1,
|
252 |
+
dilation=dilation[2],
|
253 |
+
padding=get_padding(kernel_size, dilation[2]),
|
254 |
+
)
|
255 |
+
),
|
256 |
+
]
|
257 |
+
)
|
258 |
+
self.convs1.apply(init_weights)
|
259 |
+
|
260 |
+
self.convs2 = nn.ModuleList(
|
261 |
+
[
|
262 |
+
weight_norm(
|
263 |
+
Conv1d(
|
264 |
+
channels,
|
265 |
+
channels,
|
266 |
+
kernel_size,
|
267 |
+
1,
|
268 |
+
dilation=1,
|
269 |
+
padding=get_padding(kernel_size, 1),
|
270 |
+
)
|
271 |
+
),
|
272 |
+
weight_norm(
|
273 |
+
Conv1d(
|
274 |
+
channels,
|
275 |
+
channels,
|
276 |
+
kernel_size,
|
277 |
+
1,
|
278 |
+
dilation=1,
|
279 |
+
padding=get_padding(kernel_size, 1),
|
280 |
+
)
|
281 |
+
),
|
282 |
+
weight_norm(
|
283 |
+
Conv1d(
|
284 |
+
channels,
|
285 |
+
channels,
|
286 |
+
kernel_size,
|
287 |
+
1,
|
288 |
+
dilation=1,
|
289 |
+
padding=get_padding(kernel_size, 1),
|
290 |
+
)
|
291 |
+
),
|
292 |
+
]
|
293 |
+
)
|
294 |
+
self.convs2.apply(init_weights)
|
295 |
+
|
296 |
+
def forward(self, x, x_mask=None):
|
297 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
298 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
299 |
+
if x_mask is not None:
|
300 |
+
xt = xt * x_mask
|
301 |
+
xt = c1(xt)
|
302 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
303 |
+
if x_mask is not None:
|
304 |
+
xt = xt * x_mask
|
305 |
+
xt = c2(xt)
|
306 |
+
x = xt + x
|
307 |
+
if x_mask is not None:
|
308 |
+
x = x * x_mask
|
309 |
+
return x
|
310 |
+
|
311 |
+
def remove_weight_norm(self):
|
312 |
+
for l in self.convs1:
|
313 |
+
remove_weight_norm(l)
|
314 |
+
for l in self.convs2:
|
315 |
+
remove_weight_norm(l)
|
316 |
+
|
317 |
+
|
318 |
+
class ResBlock2(torch.nn.Module):
|
319 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
320 |
+
super(ResBlock2, self).__init__()
|
321 |
+
self.convs = nn.ModuleList(
|
322 |
+
[
|
323 |
+
weight_norm(
|
324 |
+
Conv1d(
|
325 |
+
channels,
|
326 |
+
channels,
|
327 |
+
kernel_size,
|
328 |
+
1,
|
329 |
+
dilation=dilation[0],
|
330 |
+
padding=get_padding(kernel_size, dilation[0]),
|
331 |
+
)
|
332 |
+
),
|
333 |
+
weight_norm(
|
334 |
+
Conv1d(
|
335 |
+
channels,
|
336 |
+
channels,
|
337 |
+
kernel_size,
|
338 |
+
1,
|
339 |
+
dilation=dilation[1],
|
340 |
+
padding=get_padding(kernel_size, dilation[1]),
|
341 |
+
)
|
342 |
+
),
|
343 |
+
]
|
344 |
+
)
|
345 |
+
self.convs.apply(init_weights)
|
346 |
+
|
347 |
+
def forward(self, x, x_mask=None):
|
348 |
+
for c in self.convs:
|
349 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
350 |
+
if x_mask is not None:
|
351 |
+
xt = xt * x_mask
|
352 |
+
xt = c(xt)
|
353 |
+
x = xt + x
|
354 |
+
if x_mask is not None:
|
355 |
+
x = x * x_mask
|
356 |
+
return x
|
357 |
+
|
358 |
+
def remove_weight_norm(self):
|
359 |
+
for l in self.convs:
|
360 |
+
remove_weight_norm(l)
|
361 |
+
|
362 |
+
|
363 |
+
class Log(nn.Module):
|
364 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
365 |
+
if not reverse:
|
366 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
367 |
+
logdet = torch.sum(-y, [1, 2])
|
368 |
+
return y, logdet
|
369 |
+
else:
|
370 |
+
x = torch.exp(x) * x_mask
|
371 |
+
return x
|
372 |
+
|
373 |
+
|
374 |
+
class Flip(nn.Module):
|
375 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
376 |
+
x = torch.flip(x, [1])
|
377 |
+
if not reverse:
|
378 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
379 |
+
return x, logdet
|
380 |
+
else:
|
381 |
+
return x
|
382 |
+
|
383 |
+
|
384 |
+
class ElementwiseAffine(nn.Module):
|
385 |
+
def __init__(self, channels):
|
386 |
+
super().__init__()
|
387 |
+
self.channels = channels
|
388 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
389 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
390 |
+
|
391 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
392 |
+
if not reverse:
|
393 |
+
y = self.m + torch.exp(self.logs) * x
|
394 |
+
y = y * x_mask
|
395 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
396 |
+
return y, logdet
|
397 |
+
else:
|
398 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
399 |
+
return x
|
400 |
+
|
401 |
+
|
402 |
+
class ResidualCouplingLayer(nn.Module):
|
403 |
+
def __init__(
|
404 |
+
self,
|
405 |
+
channels,
|
406 |
+
hidden_channels,
|
407 |
+
kernel_size,
|
408 |
+
dilation_rate,
|
409 |
+
n_layers,
|
410 |
+
p_dropout=0,
|
411 |
+
gin_channels=0,
|
412 |
+
mean_only=False,
|
413 |
+
):
|
414 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
415 |
+
super().__init__()
|
416 |
+
self.channels = channels
|
417 |
+
self.hidden_channels = hidden_channels
|
418 |
+
self.kernel_size = kernel_size
|
419 |
+
self.dilation_rate = dilation_rate
|
420 |
+
self.n_layers = n_layers
|
421 |
+
self.half_channels = channels // 2
|
422 |
+
self.mean_only = mean_only
|
423 |
+
|
424 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
425 |
+
self.enc = WN(
|
426 |
+
hidden_channels,
|
427 |
+
kernel_size,
|
428 |
+
dilation_rate,
|
429 |
+
n_layers,
|
430 |
+
p_dropout=p_dropout,
|
431 |
+
gin_channels=gin_channels,
|
432 |
+
)
|
433 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
434 |
+
self.post.weight.data.zero_()
|
435 |
+
self.post.bias.data.zero_()
|
436 |
+
|
437 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
438 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
439 |
+
h = self.pre(x0) * x_mask
|
440 |
+
h = self.enc(h, x_mask, g=g)
|
441 |
+
stats = self.post(h) * x_mask
|
442 |
+
if not self.mean_only:
|
443 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
444 |
+
else:
|
445 |
+
m = stats
|
446 |
+
logs = torch.zeros_like(m)
|
447 |
+
|
448 |
+
if not reverse:
|
449 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
450 |
+
x = torch.cat([x0, x1], 1)
|
451 |
+
logdet = torch.sum(logs, [1, 2])
|
452 |
+
return x, logdet
|
453 |
+
else:
|
454 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
455 |
+
x = torch.cat([x0, x1], 1)
|
456 |
+
return x
|
457 |
+
|
458 |
+
|
459 |
+
class ConvFlow(nn.Module):
|
460 |
+
def __init__(
|
461 |
+
self,
|
462 |
+
in_channels,
|
463 |
+
filter_channels,
|
464 |
+
kernel_size,
|
465 |
+
n_layers,
|
466 |
+
num_bins=10,
|
467 |
+
tail_bound=5.0,
|
468 |
+
):
|
469 |
+
super().__init__()
|
470 |
+
self.in_channels = in_channels
|
471 |
+
self.filter_channels = filter_channels
|
472 |
+
self.kernel_size = kernel_size
|
473 |
+
self.n_layers = n_layers
|
474 |
+
self.num_bins = num_bins
|
475 |
+
self.tail_bound = tail_bound
|
476 |
+
self.half_channels = in_channels // 2
|
477 |
+
|
478 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
479 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
480 |
+
self.proj = nn.Conv1d(
|
481 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
482 |
+
)
|
483 |
+
self.proj.weight.data.zero_()
|
484 |
+
self.proj.bias.data.zero_()
|
485 |
+
|
486 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
487 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
488 |
+
h = self.pre(x0)
|
489 |
+
h = self.convs(h, x_mask, g=g)
|
490 |
+
h = self.proj(h) * x_mask
|
491 |
+
|
492 |
+
b, c, t = x0.shape
|
493 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
494 |
+
|
495 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
496 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
497 |
+
self.filter_channels
|
498 |
+
)
|
499 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
500 |
+
|
501 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
502 |
+
x1,
|
503 |
+
unnormalized_widths,
|
504 |
+
unnormalized_heights,
|
505 |
+
unnormalized_derivatives,
|
506 |
+
inverse=reverse,
|
507 |
+
tails="linear",
|
508 |
+
tail_bound=self.tail_bound,
|
509 |
+
)
|
510 |
+
|
511 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
512 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
513 |
+
if not reverse:
|
514 |
+
return x, logdet
|
515 |
+
else:
|
516 |
+
return x
|
517 |
+
|
518 |
+
|
519 |
+
class TransformerCouplingLayer(nn.Module):
|
520 |
+
def __init__(
|
521 |
+
self,
|
522 |
+
channels,
|
523 |
+
hidden_channels,
|
524 |
+
kernel_size,
|
525 |
+
n_layers,
|
526 |
+
n_heads,
|
527 |
+
p_dropout=0,
|
528 |
+
filter_channels=0,
|
529 |
+
mean_only=False,
|
530 |
+
wn_sharing_parameter=None,
|
531 |
+
gin_channels=0,
|
532 |
+
):
|
533 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
534 |
+
super().__init__()
|
535 |
+
self.channels = channels
|
536 |
+
self.hidden_channels = hidden_channels
|
537 |
+
self.kernel_size = kernel_size
|
538 |
+
self.n_layers = n_layers
|
539 |
+
self.half_channels = channels // 2
|
540 |
+
self.mean_only = mean_only
|
541 |
+
|
542 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
543 |
+
self.enc = (
|
544 |
+
Encoder(
|
545 |
+
hidden_channels,
|
546 |
+
filter_channels,
|
547 |
+
n_heads,
|
548 |
+
n_layers,
|
549 |
+
kernel_size,
|
550 |
+
p_dropout,
|
551 |
+
isflow=True,
|
552 |
+
gin_channels=gin_channels,
|
553 |
+
)
|
554 |
+
if wn_sharing_parameter is None
|
555 |
+
else wn_sharing_parameter
|
556 |
+
)
|
557 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
558 |
+
self.post.weight.data.zero_()
|
559 |
+
self.post.bias.data.zero_()
|
560 |
+
|
561 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
562 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
563 |
+
h = self.pre(x0) * x_mask
|
564 |
+
h = self.enc(h, x_mask, g=g)
|
565 |
+
stats = self.post(h) * x_mask
|
566 |
+
if not self.mean_only:
|
567 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
568 |
+
else:
|
569 |
+
m = stats
|
570 |
+
logs = torch.zeros_like(m)
|
571 |
+
|
572 |
+
if not reverse:
|
573 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
574 |
+
x = torch.cat([x0, x1], 1)
|
575 |
+
logdet = torch.sum(logs, [1, 2])
|
576 |
+
return x, logdet
|
577 |
+
else:
|
578 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
579 |
+
x = torch.cat([x0, x1], 1)
|
580 |
+
return x
|
581 |
+
|
582 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
583 |
+
x1,
|
584 |
+
unnormalized_widths,
|
585 |
+
unnormalized_heights,
|
586 |
+
unnormalized_derivatives,
|
587 |
+
inverse=reverse,
|
588 |
+
tails="linear",
|
589 |
+
tail_bound=self.tail_bound,
|
590 |
+
)
|
591 |
+
|
592 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
593 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
594 |
+
if not reverse:
|
595 |
+
return x, logdet
|
596 |
+
else:
|
597 |
+
return x
|
onnx_infer.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from onnx_modules.V220_OnnxInference import OnnxInferenceSession
|
2 |
+
import numpy as np
|
3 |
+
Session = OnnxInferenceSession(
|
4 |
+
{
|
5 |
+
"enc" : "onnx/BertVits2.2PT/BertVits2.2PT_enc_p.onnx",
|
6 |
+
"emb_g" : "onnx/BertVits2.2PT/BertVits2.2PT_emb.onnx",
|
7 |
+
"dp" : "onnx/BertVits2.2PT/BertVits2.2PT_dp.onnx",
|
8 |
+
"sdp" : "onnx/BertVits2.2PT/BertVits2.2PT_sdp.onnx",
|
9 |
+
"flow" : "onnx/BertVits2.2PT/BertVits2.2PT_flow.onnx",
|
10 |
+
"dec" : "onnx/BertVits2.2PT/BertVits2.2PT_dec.onnx"
|
11 |
+
},
|
12 |
+
Providers = ["CPUExecutionProvider"]
|
13 |
+
)
|
14 |
+
|
15 |
+
#这里的输入和原版是一样的,只需要在原版预处理结果出来之后加上.numpy()即可
|
16 |
+
x = np.array(
|
17 |
+
[
|
18 |
+
0,
|
19 |
+
97,
|
20 |
+
0,
|
21 |
+
8,
|
22 |
+
0,
|
23 |
+
78,
|
24 |
+
0,
|
25 |
+
8,
|
26 |
+
0,
|
27 |
+
76,
|
28 |
+
0,
|
29 |
+
37,
|
30 |
+
0,
|
31 |
+
40,
|
32 |
+
0,
|
33 |
+
97,
|
34 |
+
0,
|
35 |
+
8,
|
36 |
+
0,
|
37 |
+
23,
|
38 |
+
0,
|
39 |
+
8,
|
40 |
+
0,
|
41 |
+
74,
|
42 |
+
0,
|
43 |
+
26,
|
44 |
+
0,
|
45 |
+
104,
|
46 |
+
0,
|
47 |
+
]
|
48 |
+
)
|
49 |
+
tone = np.zeros_like(x)
|
50 |
+
language = np.zeros_like(x)
|
51 |
+
sid = np.array([0])
|
52 |
+
bert = np.random.randn(x.shape[0], 1024)
|
53 |
+
ja_bert = np.random.randn(x.shape[0], 1024)
|
54 |
+
en_bert = np.random.randn(x.shape[0], 1024)
|
55 |
+
emo = np.random.randn(512, 1)
|
56 |
+
|
57 |
+
audio = Session(
|
58 |
+
x,
|
59 |
+
tone,
|
60 |
+
language,
|
61 |
+
bert,
|
62 |
+
ja_bert,
|
63 |
+
en_bert,
|
64 |
+
emo,
|
65 |
+
sid
|
66 |
+
)
|
67 |
+
|
68 |
+
print(audio)
|
preprocess_text.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from collections import defaultdict
|
3 |
+
from random import shuffle
|
4 |
+
from typing import Optional
|
5 |
+
import os
|
6 |
+
|
7 |
+
from tqdm import tqdm
|
8 |
+
import click
|
9 |
+
from text.cleaner import clean_text
|
10 |
+
from config import config
|
11 |
+
from infer import latest_version
|
12 |
+
|
13 |
+
preprocess_text_config = config.preprocess_text_config
|
14 |
+
|
15 |
+
|
16 |
+
@click.command()
|
17 |
+
@click.option(
|
18 |
+
"--transcription-path",
|
19 |
+
default=preprocess_text_config.transcription_path,
|
20 |
+
type=click.Path(exists=True, file_okay=True, dir_okay=False),
|
21 |
+
)
|
22 |
+
@click.option("--cleaned-path", default=preprocess_text_config.cleaned_path)
|
23 |
+
@click.option("--train-path", default=preprocess_text_config.train_path)
|
24 |
+
@click.option("--val-path", default=preprocess_text_config.val_path)
|
25 |
+
@click.option(
|
26 |
+
"--config-path",
|
27 |
+
default=preprocess_text_config.config_path,
|
28 |
+
type=click.Path(exists=True, file_okay=True, dir_okay=False),
|
29 |
+
)
|
30 |
+
@click.option("--val-per-lang", default=preprocess_text_config.val_per_lang)
|
31 |
+
@click.option("--max-val-total", default=preprocess_text_config.max_val_total)
|
32 |
+
@click.option("--clean/--no-clean", default=preprocess_text_config.clean)
|
33 |
+
@click.option("-y", "--yml_config")
|
34 |
+
def preprocess(
|
35 |
+
transcription_path: str,
|
36 |
+
cleaned_path: Optional[str],
|
37 |
+
train_path: str,
|
38 |
+
val_path: str,
|
39 |
+
config_path: str,
|
40 |
+
val_per_lang: int,
|
41 |
+
max_val_total: int,
|
42 |
+
clean: bool,
|
43 |
+
yml_config: str, # 这个不要删
|
44 |
+
):
|
45 |
+
if cleaned_path == "" or cleaned_path is None:
|
46 |
+
cleaned_path = transcription_path + ".cleaned"
|
47 |
+
|
48 |
+
if clean:
|
49 |
+
with open(cleaned_path, "w", encoding="utf-8") as out_file:
|
50 |
+
with open(transcription_path, "r", encoding="utf-8") as trans_file:
|
51 |
+
lines = trans_file.readlines()
|
52 |
+
# print(lines, ' ', len(lines))
|
53 |
+
if len(lines) != 0:
|
54 |
+
for line in tqdm(lines):
|
55 |
+
try:
|
56 |
+
utt, spk, language, text = line.strip().split("|")
|
57 |
+
norm_text, phones, tones, word2ph = clean_text(
|
58 |
+
text, language
|
59 |
+
)
|
60 |
+
out_file.write(
|
61 |
+
"{}|{}|{}|{}|{}|{}|{}\n".format(
|
62 |
+
utt,
|
63 |
+
spk,
|
64 |
+
language,
|
65 |
+
norm_text,
|
66 |
+
" ".join(phones),
|
67 |
+
" ".join([str(i) for i in tones]),
|
68 |
+
" ".join([str(i) for i in word2ph]),
|
69 |
+
)
|
70 |
+
)
|
71 |
+
except Exception as e:
|
72 |
+
print(line)
|
73 |
+
print(f"生成训练集和验证集时发生错误!, 详细信息:\n{e}")
|
74 |
+
|
75 |
+
transcription_path = cleaned_path
|
76 |
+
spk_utt_map = defaultdict(list)
|
77 |
+
spk_id_map = {}
|
78 |
+
current_sid = 0
|
79 |
+
|
80 |
+
with open(transcription_path, "r", encoding="utf-8") as f:
|
81 |
+
audioPaths = set()
|
82 |
+
countSame = 0
|
83 |
+
countNotFound = 0
|
84 |
+
for line in f.readlines():
|
85 |
+
utt, spk, language, text, phones, tones, word2ph = line.strip().split("|")
|
86 |
+
if utt in audioPaths:
|
87 |
+
# 过滤数据集错误:相同的音频匹配多个文本,导致后续bert出问题
|
88 |
+
print(f"重复音频文本:{line}")
|
89 |
+
countSame += 1
|
90 |
+
continue
|
91 |
+
if not os.path.isfile(utt):
|
92 |
+
# 过滤数据集错误:不存在对应音频
|
93 |
+
print(f"没有找到对应的音频:{utt}")
|
94 |
+
countNotFound += 1
|
95 |
+
continue
|
96 |
+
audioPaths.add(utt)
|
97 |
+
spk_utt_map[language].append(line)
|
98 |
+
if spk not in spk_id_map.keys():
|
99 |
+
spk_id_map[spk] = current_sid
|
100 |
+
current_sid += 1
|
101 |
+
print(f"总重复音频数:{countSame},总未找到的音频数:{countNotFound}")
|
102 |
+
|
103 |
+
train_list = []
|
104 |
+
val_list = []
|
105 |
+
|
106 |
+
for spk, utts in spk_utt_map.items():
|
107 |
+
shuffle(utts)
|
108 |
+
val_list += utts[:val_per_lang]
|
109 |
+
train_list += utts[val_per_lang:]
|
110 |
+
|
111 |
+
shuffle(val_list)
|
112 |
+
if len(val_list) > max_val_total:
|
113 |
+
train_list += val_list[max_val_total:]
|
114 |
+
val_list = val_list[:max_val_total]
|
115 |
+
|
116 |
+
with open(train_path, "w", encoding="utf-8") as f:
|
117 |
+
for line in train_list:
|
118 |
+
f.write(line)
|
119 |
+
|
120 |
+
with open(val_path, "w", encoding="utf-8") as f:
|
121 |
+
for line in val_list:
|
122 |
+
f.write(line)
|
123 |
+
|
124 |
+
json_config = json.load(open(config_path, encoding="utf-8"))
|
125 |
+
json_config["data"]["spk2id"] = spk_id_map
|
126 |
+
json_config["data"]["n_speakers"] = len(spk_id_map)
|
127 |
+
# 新增写入:写入训练版本、数据集路径
|
128 |
+
json_config["version"] = latest_version
|
129 |
+
json_config["data"]["training_files"] = os.path.normpath(train_path).replace(
|
130 |
+
"\\", "/"
|
131 |
+
)
|
132 |
+
json_config["data"]["validation_files"] = os.path.normpath(val_path).replace(
|
133 |
+
"\\", "/"
|
134 |
+
)
|
135 |
+
with open(config_path, "w", encoding="utf-8") as f:
|
136 |
+
json.dump(json_config, f, indent=2, ensure_ascii=False)
|
137 |
+
print("训练集和验证集生成完成!")
|
138 |
+
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
preprocess()
|
re_matching.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
|
4 |
+
def extract_language_and_text_updated(speaker, dialogue):
|
5 |
+
# 使用正则表达式匹配<语言>标签和其后的文本
|
6 |
+
pattern_language_text = r"<(\S+?)>([^<]+)"
|
7 |
+
matches = re.findall(pattern_language_text, dialogue, re.DOTALL)
|
8 |
+
speaker = speaker[1:-1]
|
9 |
+
# 清理文本:去除两边的空白字符
|
10 |
+
matches_cleaned = [(lang.upper(), text.strip()) for lang, text in matches]
|
11 |
+
matches_cleaned.append(speaker)
|
12 |
+
return matches_cleaned
|
13 |
+
|
14 |
+
|
15 |
+
def validate_text(input_text):
|
16 |
+
# 验证说话人的正则表达式
|
17 |
+
pattern_speaker = r"(\[\S+?\])((?:\s*<\S+?>[^<\[\]]+?)+)"
|
18 |
+
|
19 |
+
# 使用re.DOTALL标志使.匹配包括换行符在内的所有字符
|
20 |
+
matches = re.findall(pattern_speaker, input_text, re.DOTALL)
|
21 |
+
|
22 |
+
# 对每个匹配到的说话人内容进行进一步验证
|
23 |
+
for _, dialogue in matches:
|
24 |
+
language_text_matches = extract_language_and_text_updated(_, dialogue)
|
25 |
+
if not language_text_matches:
|
26 |
+
return (
|
27 |
+
False,
|
28 |
+
"Error: Invalid format detected in dialogue content. Please check your input.",
|
29 |
+
)
|
30 |
+
|
31 |
+
# 如果输入的文本中没有找到任何匹配项
|
32 |
+
if not matches:
|
33 |
+
return (
|
34 |
+
False,
|
35 |
+
"Error: No valid speaker format detected. Please check your input.",
|
36 |
+
)
|
37 |
+
|
38 |
+
return True, "Input is valid."
|
39 |
+
|
40 |
+
|
41 |
+
def text_matching(text: str) -> list:
|
42 |
+
speaker_pattern = r"(\[\S+?\])(.+?)(?=\[\S+?\]|$)"
|
43 |
+
matches = re.findall(speaker_pattern, text, re.DOTALL)
|
44 |
+
result = []
|
45 |
+
for speaker, dialogue in matches:
|
46 |
+
result.append(extract_language_and_text_updated(speaker, dialogue))
|
47 |
+
return result
|
48 |
+
|
49 |
+
|
50 |
+
def cut_para(text):
|
51 |
+
splitted_para = re.split("[\n]", text) # 按段分
|
52 |
+
splitted_para = [
|
53 |
+
sentence.strip() for sentence in splitted_para if sentence.strip()
|
54 |
+
] # 删除空字符串
|
55 |
+
return splitted_para
|
56 |
+
|
57 |
+
|
58 |
+
def cut_sent(para):
|
59 |
+
para = re.sub("([。!;?\?])([^”’])", r"\1\n\2", para) # 单字符断句符
|
60 |
+
para = re.sub("(\.{6})([^”’])", r"\1\n\2", para) # 英文省略号
|
61 |
+
para = re.sub("(\…{2})([^”’])", r"\1\n\2", para) # 中文省略号
|
62 |
+
para = re.sub("([。!?\?][”’])([^,。!?\?])", r"\1\n\2", para)
|
63 |
+
para = para.rstrip() # 段尾如果有多余的\n就去掉它
|
64 |
+
return para.split("\n")
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
text = """
|
69 |
+
[说话人1]
|
70 |
+
[说话人2]<zh>你好吗?<jp>元気ですか?<jp>こんにちは,世界。<zh>你好吗?
|
71 |
+
[说话人3]<zh>谢谢。<jp>どういたしまして。
|
72 |
+
"""
|
73 |
+
text_matching(text)
|
74 |
+
# 测试函数
|
75 |
+
test_text = """
|
76 |
+
[说话人1]<zh>你好,こんにちは!<jp>こんにちは,世界。
|
77 |
+
[说话人2]<zh>你好吗?
|
78 |
+
"""
|
79 |
+
text_matching(test_text)
|
80 |
+
res = validate_text(test_text)
|
81 |
+
print(res)
|
requirements.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
librosa==0.9.2
|
2 |
+
matplotlib
|
3 |
+
numpy
|
4 |
+
numba
|
5 |
+
phonemizer
|
6 |
+
scipy
|
7 |
+
tensorboard
|
8 |
+
Unidecode
|
9 |
+
amfm_decompy
|
10 |
+
jieba
|
11 |
+
transformers
|
12 |
+
pypinyin
|
13 |
+
cn2an
|
14 |
+
gradio==3.41.2
|
15 |
+
av
|
16 |
+
mecab-python3
|
17 |
+
loguru
|
18 |
+
unidic-lite
|
19 |
+
cmudict
|
20 |
+
fugashi
|
21 |
+
num2words
|
22 |
+
PyYAML
|
23 |
+
requests
|
24 |
+
pyopenjtalk-prebuilt
|
25 |
+
jaconv
|
26 |
+
psutil
|
27 |
+
GPUtil
|
28 |
+
vector_quantize_pytorch
|
29 |
+
g2p_en
|
30 |
+
sentencepiece
|
31 |
+
pykakasi
|
32 |
+
langid
|
resample.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import librosa
|
4 |
+
from multiprocessing import Pool, cpu_count
|
5 |
+
|
6 |
+
import soundfile
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from config import config
|
10 |
+
|
11 |
+
|
12 |
+
def process(item):
|
13 |
+
spkdir, wav_name, args = item
|
14 |
+
wav_path = os.path.join(args.in_dir, spkdir, wav_name)
|
15 |
+
if os.path.exists(wav_path) and wav_path.lower().endswith(".wav"):
|
16 |
+
wav, sr = librosa.load(wav_path, sr=args.sr)
|
17 |
+
soundfile.write(os.path.join(args.out_dir, spkdir, wav_name), wav, sr)
|
18 |
+
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
parser = argparse.ArgumentParser()
|
22 |
+
parser.add_argument(
|
23 |
+
"--sr",
|
24 |
+
type=int,
|
25 |
+
default=config.resample_config.sampling_rate,
|
26 |
+
help="sampling rate",
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"--in_dir",
|
30 |
+
type=str,
|
31 |
+
default=config.resample_config.in_dir,
|
32 |
+
help="path to source dir",
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"--out_dir",
|
36 |
+
type=str,
|
37 |
+
default=config.resample_config.out_dir,
|
38 |
+
help="path to target dir",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--processes",
|
42 |
+
type=int,
|
43 |
+
default=0,
|
44 |
+
help="cpu_processes",
|
45 |
+
)
|
46 |
+
args, _ = parser.parse_known_args()
|
47 |
+
# autodl 无卡模式会识别出46个cpu
|
48 |
+
if args.processes == 0:
|
49 |
+
processes = cpu_count() - 2 if cpu_count() > 4 else 1
|
50 |
+
else:
|
51 |
+
processes = args.processes
|
52 |
+
pool = Pool(processes=processes)
|
53 |
+
|
54 |
+
tasks = []
|
55 |
+
|
56 |
+
for dirpath, _, filenames in os.walk(args.in_dir):
|
57 |
+
# 子级目录
|
58 |
+
spk_dir = os.path.relpath(dirpath, args.in_dir)
|
59 |
+
spk_dir_out = os.path.join(args.out_dir, spk_dir)
|
60 |
+
if not os.path.isdir(spk_dir_out):
|
61 |
+
os.makedirs(spk_dir_out, exist_ok=True)
|
62 |
+
for filename in filenames:
|
63 |
+
if filename.lower().endswith(".wav"):
|
64 |
+
twople = (spk_dir, filename, args)
|
65 |
+
tasks.append(twople)
|
66 |
+
|
67 |
+
for _ in tqdm(
|
68 |
+
pool.imap_unordered(process, tasks),
|
69 |
+
):
|
70 |
+
pass
|
71 |
+
|
72 |
+
pool.close()
|
73 |
+
pool.join()
|
74 |
+
|
75 |
+
print("音频重采样完毕!")
|
resample_legacy.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import librosa
|
4 |
+
from multiprocessing import Pool, cpu_count
|
5 |
+
|
6 |
+
import soundfile
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from config import config
|
10 |
+
|
11 |
+
|
12 |
+
def process(item):
|
13 |
+
wav_name, args = item
|
14 |
+
wav_path = os.path.join(args.in_dir, wav_name)
|
15 |
+
if os.path.exists(wav_path) and wav_path.lower().endswith(".wav"):
|
16 |
+
wav, sr = librosa.load(wav_path, sr=args.sr)
|
17 |
+
soundfile.write(os.path.join(args.out_dir, wav_name), wav, sr)
|
18 |
+
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
parser = argparse.ArgumentParser()
|
22 |
+
parser.add_argument(
|
23 |
+
"--sr",
|
24 |
+
type=int,
|
25 |
+
default=config.resample_config.sampling_rate,
|
26 |
+
help="sampling rate",
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"--in_dir",
|
30 |
+
type=str,
|
31 |
+
default=config.resample_config.in_dir,
|
32 |
+
help="path to source dir",
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"--out_dir",
|
36 |
+
type=str,
|
37 |
+
default=config.resample_config.out_dir,
|
38 |
+
help="path to target dir",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--processes",
|
42 |
+
type=int,
|
43 |
+
default=0,
|
44 |
+
help="cpu_processes",
|
45 |
+
)
|
46 |
+
args, _ = parser.parse_known_args()
|
47 |
+
# autodl 无卡模式会识别出46个cpu
|
48 |
+
if args.processes == 0:
|
49 |
+
processes = cpu_count() - 2 if cpu_count() > 4 else 1
|
50 |
+
else:
|
51 |
+
processes = args.processes
|
52 |
+
pool = Pool(processes=processes)
|
53 |
+
|
54 |
+
tasks = []
|
55 |
+
|
56 |
+
for dirpath, _, filenames in os.walk(args.in_dir):
|
57 |
+
if not os.path.isdir(args.out_dir):
|
58 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
59 |
+
for filename in filenames:
|
60 |
+
if filename.lower().endswith(".wav"):
|
61 |
+
tasks.append((filename, args))
|
62 |
+
|
63 |
+
for _ in tqdm(
|
64 |
+
pool.imap_unordered(process, tasks),
|
65 |
+
):
|
66 |
+
pass
|
67 |
+
|
68 |
+
pool.close()
|
69 |
+
pool.join()
|
70 |
+
|
71 |
+
print("音频重采样完毕!")
|
run_MnodesAndMgpus.sh
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#多机多卡训练
|
2 |
+
|
3 |
+
#--nnodes=1:3 表示 使用一到三台机器 弹性分配资源
|
4 |
+
#--nnodes=<最小节点数>:<最大节点数>
|
5 |
+
#--nproc_per_node=每台机器上可用的GPU数
|
6 |
+
#--rdzv_endpoint=主节点(最先启动的)ip:端口号
|
7 |
+
#其他不需要变
|
8 |
+
|
9 |
+
#注意: 此版本的分布式训练是基于数据并行的,多机多卡相当于开更大的batchsize,此时epoch迭代速度会增加,
|
10 |
+
#但由于 该版本的代码中 保存模型是按照global step来计算的,所以会出现的效果就是 : 保存模型的时间不会有明显加速,
|
11 |
+
#但每次保存模型时epoch都比之前迭代了更多次,也就是 “更少的步数,实现更好的效果”
|
12 |
+
|
13 |
+
#*************************
|
14 |
+
# torchrun \
|
15 |
+
# --nnodes=1:3\
|
16 |
+
# --nproc_per_node=2\
|
17 |
+
# --rdzv_id=1\
|
18 |
+
# --rdzv_backend=c10d\
|
19 |
+
# --rdzv_endpoint="inspur1:8880"\
|
20 |
+
# train_ms.py
|
21 |
+
#****************************
|
22 |
+
|
23 |
+
#多卡训练
|
24 |
+
#nproc_per_node = 机器上可用的GPU数
|
25 |
+
|
26 |
+
#*************************
|
27 |
+
torchrun \
|
28 |
+
--nnodes=1\
|
29 |
+
--nproc_per_node=2\
|
30 |
+
train_ms.py
|
31 |
+
#*************************
|
server_fastapi.py
ADDED
@@ -0,0 +1,680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
api服务 多版本多模型 fastapi实现
|
3 |
+
"""
|
4 |
+
import logging
|
5 |
+
import gc
|
6 |
+
import random
|
7 |
+
|
8 |
+
import librosa
|
9 |
+
import gradio
|
10 |
+
import numpy as np
|
11 |
+
import utils
|
12 |
+
from fastapi import FastAPI, Query, Request, File, UploadFile, Form
|
13 |
+
from fastapi.responses import Response, FileResponse
|
14 |
+
from fastapi.staticfiles import StaticFiles
|
15 |
+
from io import BytesIO
|
16 |
+
from scipy.io import wavfile
|
17 |
+
import uvicorn
|
18 |
+
import torch
|
19 |
+
import webbrowser
|
20 |
+
import psutil
|
21 |
+
import GPUtil
|
22 |
+
from typing import Dict, Optional, List, Set, Union
|
23 |
+
import os
|
24 |
+
from tools.log import logger
|
25 |
+
from urllib.parse import unquote
|
26 |
+
|
27 |
+
from infer import infer, get_net_g, latest_version
|
28 |
+
import tools.translate as trans
|
29 |
+
from re_matching import cut_sent
|
30 |
+
|
31 |
+
|
32 |
+
from config import config
|
33 |
+
|
34 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
35 |
+
|
36 |
+
|
37 |
+
class Model:
|
38 |
+
"""模型封装类"""
|
39 |
+
|
40 |
+
def __init__(self, config_path: str, model_path: str, device: str, language: str):
|
41 |
+
self.config_path: str = os.path.normpath(config_path)
|
42 |
+
self.model_path: str = os.path.normpath(model_path)
|
43 |
+
self.device: str = device
|
44 |
+
self.language: str = language
|
45 |
+
self.hps = utils.get_hparams_from_file(config_path)
|
46 |
+
self.spk2id: Dict[str, int] = self.hps.data.spk2id # spk - id 映射字典
|
47 |
+
self.id2spk: Dict[int, str] = dict() # id - spk 映射字典
|
48 |
+
for speaker, speaker_id in self.hps.data.spk2id.items():
|
49 |
+
self.id2spk[speaker_id] = speaker
|
50 |
+
self.version: str = (
|
51 |
+
self.hps.version if hasattr(self.hps, "version") else latest_version
|
52 |
+
)
|
53 |
+
self.net_g = get_net_g(
|
54 |
+
model_path=model_path,
|
55 |
+
version=self.version,
|
56 |
+
device=device,
|
57 |
+
hps=self.hps,
|
58 |
+
)
|
59 |
+
|
60 |
+
def to_dict(self) -> Dict[str, any]:
|
61 |
+
return {
|
62 |
+
"config_path": self.config_path,
|
63 |
+
"model_path": self.model_path,
|
64 |
+
"device": self.device,
|
65 |
+
"language": self.language,
|
66 |
+
"spk2id": self.spk2id,
|
67 |
+
"id2spk": self.id2spk,
|
68 |
+
"version": self.version,
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
class Models:
|
73 |
+
def __init__(self):
|
74 |
+
self.models: Dict[int, Model] = dict()
|
75 |
+
self.num = 0
|
76 |
+
# spkInfo[角色名][模型id] = 角色id
|
77 |
+
self.spk_info: Dict[str, Dict[int, int]] = dict()
|
78 |
+
self.path2ids: Dict[str, Set[int]] = dict() # 路径指向的model的id
|
79 |
+
|
80 |
+
def init_model(
|
81 |
+
self, config_path: str, model_path: str, device: str, language: str
|
82 |
+
) -> int:
|
83 |
+
"""
|
84 |
+
初始化并添加一个模型
|
85 |
+
|
86 |
+
:param config_path: 模型config.json路径
|
87 |
+
:param model_path: 模型路径
|
88 |
+
:param device: 模型推理使用设备
|
89 |
+
:param language: 模型推理默认语言
|
90 |
+
"""
|
91 |
+
# 若文件不存在则不进行加载
|
92 |
+
if not os.path.isfile(model_path):
|
93 |
+
if model_path != "":
|
94 |
+
logger.warning(f"模型文件{model_path} 不存在,不进行初始化")
|
95 |
+
return self.num
|
96 |
+
if not os.path.isfile(config_path):
|
97 |
+
if config_path != "":
|
98 |
+
logger.warning(f"配置文件{config_path} 不存在,不进行初始化")
|
99 |
+
return self.num
|
100 |
+
|
101 |
+
# 若路径中的模型已存在,则不添加模型,若不存在,则进行初始化。
|
102 |
+
model_path = os.path.realpath(model_path)
|
103 |
+
if model_path not in self.path2ids.keys():
|
104 |
+
self.path2ids[model_path] = {self.num}
|
105 |
+
self.models[self.num] = Model(
|
106 |
+
config_path=config_path,
|
107 |
+
model_path=model_path,
|
108 |
+
device=device,
|
109 |
+
language=language,
|
110 |
+
)
|
111 |
+
logger.success(f"添加模型{model_path},使用配置文件{os.path.realpath(config_path)}")
|
112 |
+
else:
|
113 |
+
# 获取一个指向id
|
114 |
+
m_id = next(iter(self.path2ids[model_path]))
|
115 |
+
self.models[self.num] = self.models[m_id]
|
116 |
+
self.path2ids[model_path].add(self.num)
|
117 |
+
logger.success("模型已存在,添加模型引用。")
|
118 |
+
# 添加角色信息
|
119 |
+
for speaker, speaker_id in self.models[self.num].spk2id.items():
|
120 |
+
if speaker not in self.spk_info.keys():
|
121 |
+
self.spk_info[speaker] = {self.num: speaker_id}
|
122 |
+
else:
|
123 |
+
self.spk_info[speaker][self.num] = speaker_id
|
124 |
+
# 修改计数
|
125 |
+
self.num += 1
|
126 |
+
return self.num - 1
|
127 |
+
|
128 |
+
def del_model(self, index: int) -> Optional[int]:
|
129 |
+
"""删除对应序号的模型,若不存在则返回None"""
|
130 |
+
if index not in self.models.keys():
|
131 |
+
return None
|
132 |
+
# 删除角色信息
|
133 |
+
for speaker, speaker_id in self.models[index].spk2id.items():
|
134 |
+
self.spk_info[speaker].pop(index)
|
135 |
+
if len(self.spk_info[speaker]) == 0:
|
136 |
+
# 若对应角色的所有模型都被删除,则清除该角色信息
|
137 |
+
self.spk_info.pop(speaker)
|
138 |
+
# 删除路径信息
|
139 |
+
model_path = os.path.realpath(self.models[index].model_path)
|
140 |
+
self.path2ids[model_path].remove(index)
|
141 |
+
if len(self.path2ids[model_path]) == 0:
|
142 |
+
self.path2ids.pop(model_path)
|
143 |
+
logger.success(f"删除模型{model_path}, id = {index}")
|
144 |
+
else:
|
145 |
+
logger.success(f"删除模型引用{model_path}, id = {index}")
|
146 |
+
# 删除模型
|
147 |
+
self.models.pop(index)
|
148 |
+
gc.collect()
|
149 |
+
if torch.cuda.is_available():
|
150 |
+
torch.cuda.empty_cache()
|
151 |
+
return index
|
152 |
+
|
153 |
+
def get_models(self):
|
154 |
+
"""获取所有模型"""
|
155 |
+
return self.models
|
156 |
+
|
157 |
+
|
158 |
+
if __name__ == "__main__":
|
159 |
+
app = FastAPI()
|
160 |
+
app.logger = logger
|
161 |
+
# 挂载静态文件
|
162 |
+
logger.info("开始挂载网页页面")
|
163 |
+
StaticDir: str = "./Web"
|
164 |
+
if not os.path.isdir(StaticDir):
|
165 |
+
logger.warning(
|
166 |
+
"缺少网页资源,无法开启网页页面,如有需要请在 https://github.com/jiangyuxiaoxiao/Bert-VITS2-UI 或者Bert-VITS对应版本的release页面下载"
|
167 |
+
)
|
168 |
+
else:
|
169 |
+
dirs = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()]
|
170 |
+
files = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()]
|
171 |
+
for dirName in dirs:
|
172 |
+
app.mount(
|
173 |
+
f"/{dirName}",
|
174 |
+
StaticFiles(directory=f"./{StaticDir}/{dirName}"),
|
175 |
+
name=dirName,
|
176 |
+
)
|
177 |
+
loaded_models = Models()
|
178 |
+
# 加载模型
|
179 |
+
logger.info("开始加载模型")
|
180 |
+
models_info = config.server_config.models
|
181 |
+
for model_info in models_info:
|
182 |
+
loaded_models.init_model(
|
183 |
+
config_path=model_info["config"],
|
184 |
+
model_path=model_info["model"],
|
185 |
+
device=model_info["device"],
|
186 |
+
language=model_info["language"],
|
187 |
+
)
|
188 |
+
|
189 |
+
@app.get("/")
|
190 |
+
async def index():
|
191 |
+
return FileResponse("./Web/index.html")
|
192 |
+
|
193 |
+
async def _voice(
|
194 |
+
text: str,
|
195 |
+
model_id: int,
|
196 |
+
speaker_name: str,
|
197 |
+
speaker_id: int,
|
198 |
+
sdp_ratio: float,
|
199 |
+
noise: float,
|
200 |
+
noisew: float,
|
201 |
+
length: float,
|
202 |
+
language: str,
|
203 |
+
auto_translate: bool,
|
204 |
+
auto_split: bool,
|
205 |
+
emotion: Optional[Union[int, str]] = None,
|
206 |
+
reference_audio=None,
|
207 |
+
style_text: Optional[str] = None,
|
208 |
+
style_weight: float = 0.7,
|
209 |
+
) -> Union[Response, Dict[str, any]]:
|
210 |
+
"""TTS实现函数"""
|
211 |
+
# 检查模型是否存在
|
212 |
+
if model_id not in loaded_models.models.keys():
|
213 |
+
logger.error(f"/voice 请求错误:模型model_id={model_id}未加载")
|
214 |
+
return {"status": 10, "detail": f"模型model_id={model_id}未加载"}
|
215 |
+
# 检查是否提供speaker
|
216 |
+
if speaker_name is None and speaker_id is None:
|
217 |
+
logger.error("/voice 请求错误:推理请求未提供speaker_name或speaker_id")
|
218 |
+
return {"status": 11, "detail": "请提供speaker_name或speaker_id"}
|
219 |
+
elif speaker_name is None:
|
220 |
+
# 检查speaker_id是否存在
|
221 |
+
if speaker_id not in loaded_models.models[model_id].id2spk.keys():
|
222 |
+
logger.error(f"/voice 请求错误:角色speaker_id={speaker_id}不存在")
|
223 |
+
return {"status": 12, "detail": f"角色speaker_id={speaker_id}不存在"}
|
224 |
+
speaker_name = loaded_models.models[model_id].id2spk[speaker_id]
|
225 |
+
# 检查speaker_name是否存在
|
226 |
+
if speaker_name not in loaded_models.models[model_id].spk2id.keys():
|
227 |
+
logger.error(f"/voice 请求错误:角色speaker_name={speaker_name}不存在")
|
228 |
+
return {"status": 13, "detail": f"角色speaker_name={speaker_name}不存在"}
|
229 |
+
# 未传入则使用默认语言
|
230 |
+
if language is None:
|
231 |
+
language = loaded_models.models[model_id].language
|
232 |
+
# 翻译会破坏mix结构,auto也会变得无意义。不要在这两个模式下使用
|
233 |
+
if auto_translate:
|
234 |
+
if language == "auto" or language == "mix":
|
235 |
+
logger.error(
|
236 |
+
f"/voice 请求错误:请勿同时使用language = {language}与auto_translate模式"
|
237 |
+
)
|
238 |
+
return {
|
239 |
+
"status": 20,
|
240 |
+
"detail": f"请勿同时使用language = {language}与auto_translate模式",
|
241 |
+
}
|
242 |
+
text = trans.translate(Sentence=text, to_Language=language.lower())
|
243 |
+
if reference_audio is not None:
|
244 |
+
ref_audio = BytesIO(await reference_audio.read())
|
245 |
+
# 2.2 适配
|
246 |
+
if loaded_models.models[model_id].version == "2.2":
|
247 |
+
ref_audio, _ = librosa.load(ref_audio, 48000)
|
248 |
+
|
249 |
+
else:
|
250 |
+
ref_audio = reference_audio
|
251 |
+
if not auto_split:
|
252 |
+
with torch.no_grad():
|
253 |
+
audio = infer(
|
254 |
+
text=text,
|
255 |
+
sdp_ratio=sdp_ratio,
|
256 |
+
noise_scale=noise,
|
257 |
+
noise_scale_w=noisew,
|
258 |
+
length_scale=length,
|
259 |
+
sid=speaker_name,
|
260 |
+
language=language,
|
261 |
+
hps=loaded_models.models[model_id].hps,
|
262 |
+
net_g=loaded_models.models[model_id].net_g,
|
263 |
+
device=loaded_models.models[model_id].device,
|
264 |
+
emotion=emotion,
|
265 |
+
reference_audio=ref_audio,
|
266 |
+
style_text=style_text,
|
267 |
+
style_weight=style_weight,
|
268 |
+
)
|
269 |
+
audio = gradio.processing_utils.convert_to_16_bit_wav(audio)
|
270 |
+
else:
|
271 |
+
texts = cut_sent(text)
|
272 |
+
audios = []
|
273 |
+
with torch.no_grad():
|
274 |
+
for t in texts:
|
275 |
+
audios.append(
|
276 |
+
infer(
|
277 |
+
text=t,
|
278 |
+
sdp_ratio=sdp_ratio,
|
279 |
+
noise_scale=noise,
|
280 |
+
noise_scale_w=noisew,
|
281 |
+
length_scale=length,
|
282 |
+
sid=speaker_name,
|
283 |
+
language=language,
|
284 |
+
hps=loaded_models.models[model_id].hps,
|
285 |
+
net_g=loaded_models.models[model_id].net_g,
|
286 |
+
device=loaded_models.models[model_id].device,
|
287 |
+
emotion=emotion,
|
288 |
+
reference_audio=ref_audio,
|
289 |
+
style_text=style_text,
|
290 |
+
style_weight=style_weight,
|
291 |
+
)
|
292 |
+
)
|
293 |
+
audios.append(np.zeros(int(44100 * 0.2)))
|
294 |
+
audio = np.concatenate(audios)
|
295 |
+
audio = gradio.processing_utils.convert_to_16_bit_wav(audio)
|
296 |
+
with BytesIO() as wavContent:
|
297 |
+
wavfile.write(
|
298 |
+
wavContent, loaded_models.models[model_id].hps.data.sampling_rate, audio
|
299 |
+
)
|
300 |
+
response = Response(content=wavContent.getvalue(), media_type="audio/wav")
|
301 |
+
return response
|
302 |
+
|
303 |
+
@app.post("/voice")
|
304 |
+
async def voice(
|
305 |
+
request: Request, # fastapi自动注入
|
306 |
+
text: str = Form(...),
|
307 |
+
model_id: int = Query(..., description="模型ID"), # 模型序号
|
308 |
+
speaker_name: str = Query(
|
309 |
+
None, description="说话人名"
|
310 |
+
), # speaker_name与 speaker_id二者选其一
|
311 |
+
speaker_id: int = Query(None, description="说话人id,与speaker_name二选一"),
|
312 |
+
sdp_ratio: float = Query(0.2, description="SDP/DP混合比"),
|
313 |
+
noise: float = Query(0.2, description="感情"),
|
314 |
+
noisew: float = Query(0.9, description="音素长度"),
|
315 |
+
length: float = Query(1, description="语速"),
|
316 |
+
language: str = Query(None, description="语言"), # 若不指定使用语言则使用默认值
|
317 |
+
auto_translate: bool = Query(False, description="自动翻译"),
|
318 |
+
auto_split: bool = Query(False, description="自动切分"),
|
319 |
+
emotion: Optional[Union[int, str]] = Query(None, description="emo"),
|
320 |
+
reference_audio: UploadFile = File(None),
|
321 |
+
style_text: Optional[str] = Form(None, description="风格文本"),
|
322 |
+
style_weight: float = Query(0.7, description="风格权重"),
|
323 |
+
):
|
324 |
+
"""语音接口,若需要上传参考音频请仅使用post请求"""
|
325 |
+
logger.info(
|
326 |
+
f"{request.client.host}:{request.client.port}/voice { unquote(str(request.query_params) )} text={text}"
|
327 |
+
)
|
328 |
+
return await _voice(
|
329 |
+
text=text,
|
330 |
+
model_id=model_id,
|
331 |
+
speaker_name=speaker_name,
|
332 |
+
speaker_id=speaker_id,
|
333 |
+
sdp_ratio=sdp_ratio,
|
334 |
+
noise=noise,
|
335 |
+
noisew=noisew,
|
336 |
+
length=length,
|
337 |
+
language=language,
|
338 |
+
auto_translate=auto_translate,
|
339 |
+
auto_split=auto_split,
|
340 |
+
emotion=emotion,
|
341 |
+
reference_audio=reference_audio,
|
342 |
+
style_text=style_text,
|
343 |
+
style_weight=style_weight,
|
344 |
+
)
|
345 |
+
|
346 |
+
@app.get("/voice")
|
347 |
+
async def voice(
|
348 |
+
request: Request, # fastapi自动注入
|
349 |
+
text: str = Query(..., description="输入文字"),
|
350 |
+
model_id: int = Query(..., description="模型ID"), # 模型序号
|
351 |
+
speaker_name: str = Query(
|
352 |
+
None, description="说话人名"
|
353 |
+
), # speaker_name与 speaker_id二者选其一
|
354 |
+
speaker_id: int = Query(None, description="说话人id,与speaker_name二选一"),
|
355 |
+
sdp_ratio: float = Query(0.2, description="SDP/DP混合比"),
|
356 |
+
noise: float = Query(0.2, description="感情"),
|
357 |
+
noisew: float = Query(0.9, description="音素长度"),
|
358 |
+
length: float = Query(1, description="语速"),
|
359 |
+
language: str = Query(None, description="语言"), # 若不指定使用语言则使用默认值
|
360 |
+
auto_translate: bool = Query(False, description="自动翻译"),
|
361 |
+
auto_split: bool = Query(False, description="自动切分"),
|
362 |
+
emotion: Optional[Union[int, str]] = Query(None, description="emo"),
|
363 |
+
style_text: Optional[str] = Query(None, description="风格文本"),
|
364 |
+
style_weight: float = Query(0.7, description="风格权重"),
|
365 |
+
):
|
366 |
+
"""语音接口"""
|
367 |
+
logger.info(
|
368 |
+
f"{request.client.host}:{request.client.port}/voice { unquote(str(request.query_params) )}"
|
369 |
+
)
|
370 |
+
return await _voice(
|
371 |
+
text=text,
|
372 |
+
model_id=model_id,
|
373 |
+
speaker_name=speaker_name,
|
374 |
+
speaker_id=speaker_id,
|
375 |
+
sdp_ratio=sdp_ratio,
|
376 |
+
noise=noise,
|
377 |
+
noisew=noisew,
|
378 |
+
length=length,
|
379 |
+
language=language,
|
380 |
+
auto_translate=auto_translate,
|
381 |
+
auto_split=auto_split,
|
382 |
+
emotion=emotion,
|
383 |
+
style_text=style_text,
|
384 |
+
style_weight=style_weight,
|
385 |
+
)
|
386 |
+
|
387 |
+
@app.get("/models/info")
|
388 |
+
def get_loaded_models_info(request: Request):
|
389 |
+
"""获取已加载模型信息"""
|
390 |
+
|
391 |
+
result: Dict[str, Dict] = dict()
|
392 |
+
for key, model in loaded_models.models.items():
|
393 |
+
result[str(key)] = model.to_dict()
|
394 |
+
return result
|
395 |
+
|
396 |
+
@app.get("/models/delete")
|
397 |
+
def delete_model(
|
398 |
+
request: Request, model_id: int = Query(..., description="删除模型id")
|
399 |
+
):
|
400 |
+
"""删除指定模型"""
|
401 |
+
logger.info(
|
402 |
+
f"{request.client.host}:{request.client.port}/models/delete { unquote(str(request.query_params) )}"
|
403 |
+
)
|
404 |
+
result = loaded_models.del_model(model_id)
|
405 |
+
if result is None:
|
406 |
+
logger.error(f"/models/delete 模型删除错误:模型{model_id}不存在,删除失败")
|
407 |
+
return {"status": 14, "detail": f"模型{model_id}不存在,删除失败"}
|
408 |
+
|
409 |
+
return {"status": 0, "detail": "删除成功"}
|
410 |
+
|
411 |
+
@app.get("/models/add")
|
412 |
+
def add_model(
|
413 |
+
request: Request,
|
414 |
+
model_path: str = Query(..., description="添加模型路径"),
|
415 |
+
config_path: str = Query(
|
416 |
+
None, description="添加模型配置文件路径,不填则使用./config.json或../config.json"
|
417 |
+
),
|
418 |
+
device: str = Query("cuda", description="推理使用设备"),
|
419 |
+
language: str = Query("ZH", description="模型默认语言"),
|
420 |
+
):
|
421 |
+
"""添加指定模型:允许重复添加相同路径模型,且不重复占用内存"""
|
422 |
+
logger.info(
|
423 |
+
f"{request.client.host}:{request.client.port}/models/add { unquote(str(request.query_params) )}"
|
424 |
+
)
|
425 |
+
if config_path is None:
|
426 |
+
model_dir = os.path.dirname(model_path)
|
427 |
+
if os.path.isfile(os.path.join(model_dir, "config.json")):
|
428 |
+
config_path = os.path.join(model_dir, "config.json")
|
429 |
+
elif os.path.isfile(os.path.join(model_dir, "../config.json")):
|
430 |
+
config_path = os.path.join(model_dir, "../config.json")
|
431 |
+
else:
|
432 |
+
logger.error("/models/add 模型添加失败:未在模型所在目录以及上级目录找到config.json文件")
|
433 |
+
return {
|
434 |
+
"status": 15,
|
435 |
+
"detail": "查询未传入配置文件路径,同时默认路径./与../中不存在配置文件config.json。",
|
436 |
+
}
|
437 |
+
try:
|
438 |
+
model_id = loaded_models.init_model(
|
439 |
+
config_path=config_path,
|
440 |
+
model_path=model_path,
|
441 |
+
device=device,
|
442 |
+
language=language,
|
443 |
+
)
|
444 |
+
except Exception:
|
445 |
+
logging.exception("模型加载出错")
|
446 |
+
return {
|
447 |
+
"status": 16,
|
448 |
+
"detail": "模型加载出错,详细查看日志",
|
449 |
+
}
|
450 |
+
return {
|
451 |
+
"status": 0,
|
452 |
+
"detail": "模型添加成功",
|
453 |
+
"Data": {
|
454 |
+
"model_id": model_id,
|
455 |
+
"model_info": loaded_models.models[model_id].to_dict(),
|
456 |
+
},
|
457 |
+
}
|
458 |
+
|
459 |
+
def _get_all_models(root_dir: str = "Data", only_unloaded: bool = False):
|
460 |
+
"""从root_dir搜索获取所有可用模型"""
|
461 |
+
result: Dict[str, List[str]] = dict()
|
462 |
+
files = os.listdir(root_dir) + ["."]
|
463 |
+
for file in files:
|
464 |
+
if os.path.isdir(os.path.join(root_dir, file)):
|
465 |
+
sub_dir = os.path.join(root_dir, file)
|
466 |
+
# 搜索 "sub_dir" 、 "sub_dir/models" 两个路径
|
467 |
+
result[file] = list()
|
468 |
+
sub_files = os.listdir(sub_dir)
|
469 |
+
model_files = []
|
470 |
+
for sub_file in sub_files:
|
471 |
+
relpath = os.path.realpath(os.path.join(sub_dir, sub_file))
|
472 |
+
if only_unloaded and relpath in loaded_models.path2ids.keys():
|
473 |
+
continue
|
474 |
+
if sub_file.endswith(".pth") and sub_file.startswith("G_"):
|
475 |
+
if os.path.isfile(relpath):
|
476 |
+
model_files.append(sub_file)
|
477 |
+
# 对模型文件按步数排序
|
478 |
+
model_files = sorted(
|
479 |
+
model_files,
|
480 |
+
key=lambda pth: int(pth.lstrip("G_").rstrip(".pth"))
|
481 |
+
if pth.lstrip("G_").rstrip(".pth").isdigit()
|
482 |
+
else 10**10,
|
483 |
+
)
|
484 |
+
result[file] = model_files
|
485 |
+
models_dir = os.path.join(sub_dir, "models")
|
486 |
+
model_files = []
|
487 |
+
if os.path.isdir(models_dir):
|
488 |
+
sub_files = os.listdir(models_dir)
|
489 |
+
for sub_file in sub_files:
|
490 |
+
relpath = os.path.realpath(os.path.join(models_dir, sub_file))
|
491 |
+
if only_unloaded and relpath in loaded_models.path2ids.keys():
|
492 |
+
continue
|
493 |
+
if sub_file.endswith(".pth") and sub_file.startswith("G_"):
|
494 |
+
if os.path.isfile(os.path.join(models_dir, sub_file)):
|
495 |
+
model_files.append(f"models/{sub_file}")
|
496 |
+
# 对模型文件按步数排序
|
497 |
+
model_files = sorted(
|
498 |
+
model_files,
|
499 |
+
key=lambda pth: int(pth.lstrip("models/G_").rstrip(".pth"))
|
500 |
+
if pth.lstrip("models/G_").rstrip(".pth").isdigit()
|
501 |
+
else 10**10,
|
502 |
+
)
|
503 |
+
result[file] += model_files
|
504 |
+
if len(result[file]) == 0:
|
505 |
+
result.pop(file)
|
506 |
+
|
507 |
+
return result
|
508 |
+
|
509 |
+
@app.get("/models/get_unloaded")
|
510 |
+
def get_unloaded_models_info(
|
511 |
+
request: Request, root_dir: str = Query("Data", description="搜索根目录")
|
512 |
+
):
|
513 |
+
"""获取未加载模型"""
|
514 |
+
logger.info(
|
515 |
+
f"{request.client.host}:{request.client.port}/models/get_unloaded { unquote(str(request.query_params) )}"
|
516 |
+
)
|
517 |
+
return _get_all_models(root_dir, only_unloaded=True)
|
518 |
+
|
519 |
+
@app.get("/models/get_local")
|
520 |
+
def get_local_models_info(
|
521 |
+
request: Request, root_dir: str = Query("Data", description="搜索根目录")
|
522 |
+
):
|
523 |
+
"""获取全部本地模型"""
|
524 |
+
logger.info(
|
525 |
+
f"{request.client.host}:{request.client.port}/models/get_local { unquote(str(request.query_params) )}"
|
526 |
+
)
|
527 |
+
return _get_all_models(root_dir, only_unloaded=False)
|
528 |
+
|
529 |
+
@app.get("/status")
|
530 |
+
def get_status():
|
531 |
+
"""获取电脑运行状态"""
|
532 |
+
cpu_percent = psutil.cpu_percent(interval=1)
|
533 |
+
memory_info = psutil.virtual_memory()
|
534 |
+
memory_total = memory_info.total
|
535 |
+
memory_available = memory_info.available
|
536 |
+
memory_used = memory_info.used
|
537 |
+
memory_percent = memory_info.percent
|
538 |
+
gpuInfo = []
|
539 |
+
devices = ["cpu"]
|
540 |
+
for i in range(torch.cuda.device_count()):
|
541 |
+
devices.append(f"cuda:{i}")
|
542 |
+
gpus = GPUtil.getGPUs()
|
543 |
+
for gpu in gpus:
|
544 |
+
gpuInfo.append(
|
545 |
+
{
|
546 |
+
"gpu_id": gpu.id,
|
547 |
+
"gpu_load": gpu.load,
|
548 |
+
"gpu_memory": {
|
549 |
+
"total": gpu.memoryTotal,
|
550 |
+
"used": gpu.memoryUsed,
|
551 |
+
"free": gpu.memoryFree,
|
552 |
+
},
|
553 |
+
}
|
554 |
+
)
|
555 |
+
return {
|
556 |
+
"devices": devices,
|
557 |
+
"cpu_percent": cpu_percent,
|
558 |
+
"memory_total": memory_total,
|
559 |
+
"memory_available": memory_available,
|
560 |
+
"memory_used": memory_used,
|
561 |
+
"memory_percent": memory_percent,
|
562 |
+
"gpu": gpuInfo,
|
563 |
+
}
|
564 |
+
|
565 |
+
@app.get("/tools/translate")
|
566 |
+
def translate(
|
567 |
+
request: Request,
|
568 |
+
texts: str = Query(..., description="待翻译文本"),
|
569 |
+
to_language: str = Query(..., description="翻译目标语言"),
|
570 |
+
):
|
571 |
+
"""翻译"""
|
572 |
+
logger.info(
|
573 |
+
f"{request.client.host}:{request.client.port}/tools/translate { unquote(str(request.query_params) )}"
|
574 |
+
)
|
575 |
+
return {"texts": trans.translate(Sentence=texts, to_Language=to_language)}
|
576 |
+
|
577 |
+
all_examples: Dict[str, Dict[str, List]] = dict() # 存放示例
|
578 |
+
|
579 |
+
@app.get("/tools/random_example")
|
580 |
+
def random_example(
|
581 |
+
request: Request,
|
582 |
+
language: str = Query(None, description="指定语言,未指定则随机返回"),
|
583 |
+
root_dir: str = Query("Data", description="搜索根目录"),
|
584 |
+
):
|
585 |
+
"""
|
586 |
+
获取一个随机音频+文本,用于对比,音频会从本地目录随机选择。
|
587 |
+
"""
|
588 |
+
logger.info(
|
589 |
+
f"{request.client.host}:{request.client.port}/tools/random_example { unquote(str(request.query_params) )}"
|
590 |
+
)
|
591 |
+
global all_examples
|
592 |
+
# 数据初始化
|
593 |
+
if root_dir not in all_examples.keys():
|
594 |
+
all_examples[root_dir] = {"ZH": [], "JP": [], "EN": []}
|
595 |
+
|
596 |
+
examples = all_examples[root_dir]
|
597 |
+
|
598 |
+
# 从项目Data目录中搜索train/val.list
|
599 |
+
for root, directories, _files in os.walk(root_dir):
|
600 |
+
for file in _files:
|
601 |
+
if file in ["train.list", "val.list"]:
|
602 |
+
with open(
|
603 |
+
os.path.join(root, file), mode="r", encoding="utf-8"
|
604 |
+
) as f:
|
605 |
+
lines = f.readlines()
|
606 |
+
for line in lines:
|
607 |
+
data = line.split("|")
|
608 |
+
if len(data) != 7:
|
609 |
+
continue
|
610 |
+
# 音频存在 且语言为ZH/EN/JP
|
611 |
+
if os.path.isfile(data[0]) and data[2] in [
|
612 |
+
"ZH",
|
613 |
+
"JP",
|
614 |
+
"EN",
|
615 |
+
]:
|
616 |
+
examples[data[2]].append(
|
617 |
+
{
|
618 |
+
"text": data[3],
|
619 |
+
"audio": data[0],
|
620 |
+
"speaker": data[1],
|
621 |
+
}
|
622 |
+
)
|
623 |
+
|
624 |
+
examples = all_examples[root_dir]
|
625 |
+
if language is None:
|
626 |
+
if len(examples["ZH"]) + len(examples["JP"]) + len(examples["EN"]) == 0:
|
627 |
+
return {"status": 17, "detail": "没有加载任何示例数据"}
|
628 |
+
else:
|
629 |
+
# 随机选一个
|
630 |
+
rand_num = random.randint(
|
631 |
+
0,
|
632 |
+
len(examples["ZH"]) + len(examples["JP"]) + len(examples["EN"]) - 1,
|
633 |
+
)
|
634 |
+
# ZH
|
635 |
+
if rand_num < len(examples["ZH"]):
|
636 |
+
return {"status": 0, "Data": examples["ZH"][rand_num]}
|
637 |
+
# JP
|
638 |
+
if rand_num < len(examples["ZH"]) + len(examples["JP"]):
|
639 |
+
return {
|
640 |
+
"status": 0,
|
641 |
+
"Data": examples["JP"][rand_num - len(examples["ZH"])],
|
642 |
+
}
|
643 |
+
# EN
|
644 |
+
return {
|
645 |
+
"status": 0,
|
646 |
+
"Data": examples["EN"][
|
647 |
+
rand_num - len(examples["ZH"]) - len(examples["JP"])
|
648 |
+
],
|
649 |
+
}
|
650 |
+
|
651 |
+
else:
|
652 |
+
if len(examples[language]) == 0:
|
653 |
+
return {"status": 17, "detail": f"没有加载任何{language}数据"}
|
654 |
+
return {
|
655 |
+
"status": 0,
|
656 |
+
"Data": examples[language][
|
657 |
+
random.randint(0, len(examples[language]) - 1)
|
658 |
+
],
|
659 |
+
}
|
660 |
+
|
661 |
+
@app.get("/tools/get_audio")
|
662 |
+
def get_audio(request: Request, path: str = Query(..., description="本地音频路径")):
|
663 |
+
logger.info(
|
664 |
+
f"{request.client.host}:{request.client.port}/tools/get_audio { unquote(str(request.query_params) )}"
|
665 |
+
)
|
666 |
+
if not os.path.isfile(path):
|
667 |
+
logger.error(f"/tools/get_audio 获取音频错误:指定音频{path}不存在")
|
668 |
+
return {"status": 18, "detail": "指定音频不存在"}
|
669 |
+
if not path.lower().endswith(".wav"):
|
670 |
+
logger.error(f"/tools/get_audio 获取音频错误:音频{path}非wav文件")
|
671 |
+
return {"status": 19, "detail": "非wav格式文件"}
|
672 |
+
return FileResponse(path=path)
|
673 |
+
|
674 |
+
logger.warning("本地服务,请勿将服务端口暴露于外网")
|
675 |
+
logger.info(f"api文档地址 http://127.0.0.1:{config.server_config.port}/docs")
|
676 |
+
if os.path.isdir(StaticDir):
|
677 |
+
webbrowser.open(f"http://127.0.0.1:{config.server_config.port}")
|
678 |
+
uvicorn.run(
|
679 |
+
app, port=config.server_config.port, host="0.0.0.0", log_level="warning"
|
680 |
+
)
|
spec_gen.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
from multiprocessing import Pool
|
4 |
+
from mel_processing import spectrogram_torch, mel_spectrogram_torch
|
5 |
+
from utils import load_wav_to_torch
|
6 |
+
|
7 |
+
|
8 |
+
class AudioProcessor:
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
max_wav_value,
|
12 |
+
use_mel_spec_posterior,
|
13 |
+
filter_length,
|
14 |
+
n_mel_channels,
|
15 |
+
sampling_rate,
|
16 |
+
hop_length,
|
17 |
+
win_length,
|
18 |
+
mel_fmin,
|
19 |
+
mel_fmax,
|
20 |
+
):
|
21 |
+
self.max_wav_value = max_wav_value
|
22 |
+
self.use_mel_spec_posterior = use_mel_spec_posterior
|
23 |
+
self.filter_length = filter_length
|
24 |
+
self.n_mel_channels = n_mel_channels
|
25 |
+
self.sampling_rate = sampling_rate
|
26 |
+
self.hop_length = hop_length
|
27 |
+
self.win_length = win_length
|
28 |
+
self.mel_fmin = mel_fmin
|
29 |
+
self.mel_fmax = mel_fmax
|
30 |
+
|
31 |
+
def process_audio(self, filename):
|
32 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
33 |
+
audio_norm = audio / self.max_wav_value
|
34 |
+
audio_norm = audio_norm.unsqueeze(0)
|
35 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
36 |
+
if self.use_mel_spec_posterior:
|
37 |
+
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
38 |
+
try:
|
39 |
+
spec = torch.load(spec_filename)
|
40 |
+
except:
|
41 |
+
if self.use_mel_spec_posterior:
|
42 |
+
spec = mel_spectrogram_torch(
|
43 |
+
audio_norm,
|
44 |
+
self.filter_length,
|
45 |
+
self.n_mel_channels,
|
46 |
+
self.sampling_rate,
|
47 |
+
self.hop_length,
|
48 |
+
self.win_length,
|
49 |
+
self.mel_fmin,
|
50 |
+
self.mel_fmax,
|
51 |
+
center=False,
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
spec = spectrogram_torch(
|
55 |
+
audio_norm,
|
56 |
+
self.filter_length,
|
57 |
+
self.sampling_rate,
|
58 |
+
self.hop_length,
|
59 |
+
self.win_length,
|
60 |
+
center=False,
|
61 |
+
)
|
62 |
+
spec = torch.squeeze(spec, 0)
|
63 |
+
torch.save(spec, spec_filename)
|
64 |
+
return spec, audio_norm
|
65 |
+
|
66 |
+
|
67 |
+
# 使用示例
|
68 |
+
processor = AudioProcessor(
|
69 |
+
max_wav_value=32768.0,
|
70 |
+
use_mel_spec_posterior=False,
|
71 |
+
filter_length=2048,
|
72 |
+
n_mel_channels=128,
|
73 |
+
sampling_rate=44100,
|
74 |
+
hop_length=512,
|
75 |
+
win_length=2048,
|
76 |
+
mel_fmin=0.0,
|
77 |
+
mel_fmax="null",
|
78 |
+
)
|
79 |
+
|
80 |
+
with open("filelists/train.list", "r") as f:
|
81 |
+
filepaths = [line.split("|")[0] for line in f] # 取每一行的第一部分作为audiopath
|
82 |
+
|
83 |
+
# 使用多进程处理
|
84 |
+
with Pool(processes=32) as pool: # 使用4个进程
|
85 |
+
with tqdm(total=len(filepaths)) as pbar:
|
86 |
+
for i, _ in enumerate(pool.imap_unordered(processor.process_audio, filepaths)):
|
87 |
+
pbar.update()
|
train_ms.py
ADDED
@@ -0,0 +1,840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: E402
|
2 |
+
import platform
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from torch.utils.tensorboard import SummaryWriter
|
8 |
+
import torch.distributed as dist
|
9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
+
from torch.cuda.amp import autocast, GradScaler
|
11 |
+
from tqdm import tqdm
|
12 |
+
import logging
|
13 |
+
from config import config
|
14 |
+
import argparse
|
15 |
+
import datetime
|
16 |
+
import gc
|
17 |
+
|
18 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
19 |
+
import commons
|
20 |
+
import utils
|
21 |
+
from data_utils import (
|
22 |
+
TextAudioSpeakerLoader,
|
23 |
+
TextAudioSpeakerCollate,
|
24 |
+
DistributedBucketSampler,
|
25 |
+
)
|
26 |
+
from models import (
|
27 |
+
SynthesizerTrn,
|
28 |
+
MultiPeriodDiscriminator,
|
29 |
+
DurationDiscriminator,
|
30 |
+
WavLMDiscriminator,
|
31 |
+
)
|
32 |
+
from losses import (
|
33 |
+
generator_loss,
|
34 |
+
discriminator_loss,
|
35 |
+
feature_loss,
|
36 |
+
kl_loss,
|
37 |
+
WavLMLoss,
|
38 |
+
)
|
39 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
40 |
+
from text.symbols import symbols
|
41 |
+
|
42 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
43 |
+
torch.backends.cudnn.allow_tf32 = (
|
44 |
+
True # If encontered training problem,please try to disable TF32.
|
45 |
+
)
|
46 |
+
torch.set_float32_matmul_precision("medium")
|
47 |
+
torch.backends.cuda.sdp_kernel("flash")
|
48 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
49 |
+
torch.backends.cuda.enable_mem_efficient_sdp(
|
50 |
+
True
|
51 |
+
) # Not available if torch version is lower than 2.0
|
52 |
+
global_step = 0
|
53 |
+
|
54 |
+
|
55 |
+
def run():
|
56 |
+
# 环境变量解析
|
57 |
+
envs = config.train_ms_config.env
|
58 |
+
for env_name, env_value in envs.items():
|
59 |
+
if env_name not in os.environ.keys():
|
60 |
+
print("加载config中的配置{}".format(str(env_value)))
|
61 |
+
os.environ[env_name] = str(env_value)
|
62 |
+
print(
|
63 |
+
"加载环境变量 \nMASTER_ADDR: {},\nMASTER_PORT: {},\nWORLD_SIZE: {},\nRANK: {},\nLOCAL_RANK: {}".format(
|
64 |
+
os.environ["MASTER_ADDR"],
|
65 |
+
os.environ["MASTER_PORT"],
|
66 |
+
os.environ["WORLD_SIZE"],
|
67 |
+
os.environ["RANK"],
|
68 |
+
os.environ["LOCAL_RANK"],
|
69 |
+
)
|
70 |
+
)
|
71 |
+
|
72 |
+
backend = "nccl"
|
73 |
+
if platform.system() == "Windows":
|
74 |
+
backend = "gloo" # If Windows,switch to gloo backend.
|
75 |
+
dist.init_process_group(
|
76 |
+
backend=backend,
|
77 |
+
init_method="env://",
|
78 |
+
timeout=datetime.timedelta(seconds=300),
|
79 |
+
) # Use torchrun instead of mp.spawn
|
80 |
+
rank = dist.get_rank()
|
81 |
+
local_rank = int(os.environ["LOCAL_RANK"])
|
82 |
+
n_gpus = dist.get_world_size()
|
83 |
+
|
84 |
+
# 命令行/config.yml配置解析
|
85 |
+
# hps = utils.get_hparams()
|
86 |
+
parser = argparse.ArgumentParser()
|
87 |
+
# 非必要不建议使用命令行配置,请使用config.yml文件
|
88 |
+
parser.add_argument(
|
89 |
+
"-c",
|
90 |
+
"--config",
|
91 |
+
type=str,
|
92 |
+
default=config.train_ms_config.config_path,
|
93 |
+
help="JSON file for configuration",
|
94 |
+
)
|
95 |
+
|
96 |
+
parser.add_argument(
|
97 |
+
"-m",
|
98 |
+
"--model",
|
99 |
+
type=str,
|
100 |
+
help="数据集文件夹路径,请注意,数据不再默认放在/logs文件夹下。如果需要用命令行配置,请声明相对于根目录的路径",
|
101 |
+
default=config.dataset_path,
|
102 |
+
)
|
103 |
+
args = parser.parse_args()
|
104 |
+
model_dir = os.path.join(args.model, config.train_ms_config.model)
|
105 |
+
if not os.path.exists(model_dir):
|
106 |
+
os.makedirs(model_dir)
|
107 |
+
hps = utils.get_hparams_from_file(args.config)
|
108 |
+
hps.model_dir = model_dir
|
109 |
+
# 比较路径是否相同
|
110 |
+
if os.path.realpath(args.config) != os.path.realpath(
|
111 |
+
config.train_ms_config.config_path
|
112 |
+
):
|
113 |
+
with open(args.config, "r", encoding="utf-8") as f:
|
114 |
+
data = f.read()
|
115 |
+
with open(config.train_ms_config.config_path, "w", encoding="utf-8") as f:
|
116 |
+
f.write(data)
|
117 |
+
|
118 |
+
torch.manual_seed(hps.train.seed)
|
119 |
+
torch.cuda.set_device(local_rank)
|
120 |
+
|
121 |
+
global global_step
|
122 |
+
if rank == 0:
|
123 |
+
logger = utils.get_logger(hps.model_dir)
|
124 |
+
logger.info(hps)
|
125 |
+
utils.check_git_hash(hps.model_dir)
|
126 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
127 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
128 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
129 |
+
train_sampler = DistributedBucketSampler(
|
130 |
+
train_dataset,
|
131 |
+
hps.train.batch_size,
|
132 |
+
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
133 |
+
num_replicas=n_gpus,
|
134 |
+
rank=rank,
|
135 |
+
shuffle=True,
|
136 |
+
)
|
137 |
+
collate_fn = TextAudioSpeakerCollate()
|
138 |
+
train_loader = DataLoader(
|
139 |
+
train_dataset,
|
140 |
+
num_workers=min(config.train_ms_config.num_workers, os.cpu_count() - 1),
|
141 |
+
shuffle=False,
|
142 |
+
pin_memory=True,
|
143 |
+
collate_fn=collate_fn,
|
144 |
+
batch_sampler=train_sampler,
|
145 |
+
persistent_workers=True,
|
146 |
+
prefetch_factor=4,
|
147 |
+
) # DataLoader config could be adjusted.
|
148 |
+
if rank == 0:
|
149 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
150 |
+
eval_loader = DataLoader(
|
151 |
+
eval_dataset,
|
152 |
+
num_workers=0,
|
153 |
+
shuffle=False,
|
154 |
+
batch_size=1,
|
155 |
+
pin_memory=True,
|
156 |
+
drop_last=False,
|
157 |
+
collate_fn=collate_fn,
|
158 |
+
)
|
159 |
+
if (
|
160 |
+
"use_noise_scaled_mas" in hps.model.keys()
|
161 |
+
and hps.model.use_noise_scaled_mas is True
|
162 |
+
):
|
163 |
+
print("Using noise scaled MAS for VITS2")
|
164 |
+
mas_noise_scale_initial = 0.01
|
165 |
+
noise_scale_delta = 2e-6
|
166 |
+
else:
|
167 |
+
print("Using normal MAS for VITS1")
|
168 |
+
mas_noise_scale_initial = 0.0
|
169 |
+
noise_scale_delta = 0.0
|
170 |
+
if (
|
171 |
+
"use_duration_discriminator" in hps.model.keys()
|
172 |
+
and hps.model.use_duration_discriminator is True
|
173 |
+
):
|
174 |
+
print("Using duration discriminator for VITS2")
|
175 |
+
net_dur_disc = DurationDiscriminator(
|
176 |
+
hps.model.hidden_channels,
|
177 |
+
hps.model.hidden_channels,
|
178 |
+
3,
|
179 |
+
0.1,
|
180 |
+
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
181 |
+
).cuda(local_rank)
|
182 |
+
else:
|
183 |
+
net_dur_disc = None
|
184 |
+
if (
|
185 |
+
"use_spk_conditioned_encoder" in hps.model.keys()
|
186 |
+
and hps.model.use_spk_conditioned_encoder is True
|
187 |
+
):
|
188 |
+
if hps.data.n_speakers == 0:
|
189 |
+
raise ValueError(
|
190 |
+
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
print("Using normal encoder for VITS1")
|
194 |
+
|
195 |
+
net_g = SynthesizerTrn(
|
196 |
+
len(symbols),
|
197 |
+
hps.data.filter_length // 2 + 1,
|
198 |
+
hps.train.segment_size // hps.data.hop_length,
|
199 |
+
n_speakers=hps.data.n_speakers,
|
200 |
+
mas_noise_scale_initial=mas_noise_scale_initial,
|
201 |
+
noise_scale_delta=noise_scale_delta,
|
202 |
+
**hps.model,
|
203 |
+
).cuda(local_rank)
|
204 |
+
|
205 |
+
if getattr(hps.train, "freeze_ZH_bert", False):
|
206 |
+
print("Freezing ZH bert encoder !!!")
|
207 |
+
for param in net_g.enc_p.bert_proj.parameters():
|
208 |
+
param.requires_grad = False
|
209 |
+
|
210 |
+
if getattr(hps.train, "freeze_EN_bert", False):
|
211 |
+
print("Freezing EN bert encoder !!!")
|
212 |
+
for param in net_g.enc_p.en_bert_proj.parameters():
|
213 |
+
param.requires_grad = False
|
214 |
+
|
215 |
+
if getattr(hps.train, "freeze_JP_bert", False):
|
216 |
+
print("Freezing JP bert encoder !!!")
|
217 |
+
for param in net_g.enc_p.ja_bert_proj.parameters():
|
218 |
+
param.requires_grad = False
|
219 |
+
|
220 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(local_rank)
|
221 |
+
net_wd = WavLMDiscriminator(
|
222 |
+
hps.model.slm.hidden, hps.model.slm.nlayers, hps.model.slm.initial_channel
|
223 |
+
).cuda(local_rank)
|
224 |
+
optim_g = torch.optim.AdamW(
|
225 |
+
filter(lambda p: p.requires_grad, net_g.parameters()),
|
226 |
+
hps.train.learning_rate,
|
227 |
+
betas=hps.train.betas,
|
228 |
+
eps=hps.train.eps,
|
229 |
+
)
|
230 |
+
optim_d = torch.optim.AdamW(
|
231 |
+
net_d.parameters(),
|
232 |
+
hps.train.learning_rate,
|
233 |
+
betas=hps.train.betas,
|
234 |
+
eps=hps.train.eps,
|
235 |
+
)
|
236 |
+
optim_wd = torch.optim.AdamW(
|
237 |
+
net_wd.parameters(),
|
238 |
+
hps.train.learning_rate,
|
239 |
+
betas=hps.train.betas,
|
240 |
+
eps=hps.train.eps,
|
241 |
+
)
|
242 |
+
if net_dur_disc is not None:
|
243 |
+
optim_dur_disc = torch.optim.AdamW(
|
244 |
+
net_dur_disc.parameters(),
|
245 |
+
hps.train.learning_rate,
|
246 |
+
betas=hps.train.betas,
|
247 |
+
eps=hps.train.eps,
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
optim_dur_disc = None
|
251 |
+
net_g = DDP(net_g, device_ids=[local_rank], bucket_cap_mb=512)
|
252 |
+
net_d = DDP(net_d, device_ids=[local_rank], bucket_cap_mb=512)
|
253 |
+
net_wd = DDP(net_wd, device_ids=[local_rank], bucket_cap_mb=512)
|
254 |
+
if net_dur_disc is not None:
|
255 |
+
net_dur_disc = DDP(
|
256 |
+
net_dur_disc,
|
257 |
+
device_ids=[local_rank],
|
258 |
+
bucket_cap_mb=512,
|
259 |
+
)
|
260 |
+
|
261 |
+
# 下载底模
|
262 |
+
if config.train_ms_config.base["use_base_model"]:
|
263 |
+
utils.download_checkpoint(
|
264 |
+
hps.model_dir,
|
265 |
+
config.train_ms_config.base,
|
266 |
+
token=config.openi_token,
|
267 |
+
mirror=config.mirror,
|
268 |
+
)
|
269 |
+
dur_resume_lr = hps.train.learning_rate
|
270 |
+
wd_resume_lr = hps.train.learning_rate
|
271 |
+
if net_dur_disc is not None:
|
272 |
+
try:
|
273 |
+
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
|
274 |
+
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
|
275 |
+
net_dur_disc,
|
276 |
+
optim_dur_disc,
|
277 |
+
skip_optimizer=hps.train.skip_optimizer
|
278 |
+
if "skip_optimizer" in hps.train
|
279 |
+
else True,
|
280 |
+
)
|
281 |
+
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
282 |
+
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
283 |
+
except:
|
284 |
+
print("Initialize dur_disc")
|
285 |
+
|
286 |
+
try:
|
287 |
+
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
|
288 |
+
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
|
289 |
+
net_g,
|
290 |
+
optim_g,
|
291 |
+
skip_optimizer=hps.train.skip_optimizer
|
292 |
+
if "skip_optimizer" in hps.train
|
293 |
+
else True,
|
294 |
+
)
|
295 |
+
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
|
296 |
+
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
|
297 |
+
net_d,
|
298 |
+
optim_d,
|
299 |
+
skip_optimizer=hps.train.skip_optimizer
|
300 |
+
if "skip_optimizer" in hps.train
|
301 |
+
else True,
|
302 |
+
)
|
303 |
+
if not optim_g.param_groups[0].get("initial_lr"):
|
304 |
+
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
|
305 |
+
if not optim_d.param_groups[0].get("initial_lr"):
|
306 |
+
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
|
307 |
+
|
308 |
+
epoch_str = max(epoch_str, 1)
|
309 |
+
# global_step = (epoch_str - 1) * len(train_loader)
|
310 |
+
global_step = int(
|
311 |
+
utils.get_steps(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"))
|
312 |
+
)
|
313 |
+
print(
|
314 |
+
f"******************检测到模型存在,epoch为 {epoch_str},gloabl step为 {global_step}*********************"
|
315 |
+
)
|
316 |
+
except Exception as e:
|
317 |
+
print(e)
|
318 |
+
epoch_str = 1
|
319 |
+
global_step = 0
|
320 |
+
|
321 |
+
try:
|
322 |
+
_, optim_wd, wd_resume_lr, epoch_str = utils.load_checkpoint(
|
323 |
+
utils.latest_checkpoint_path(hps.model_dir, "WD_*.pth"),
|
324 |
+
net_wd,
|
325 |
+
optim_wd,
|
326 |
+
skip_optimizer=hps.train.skip_optimizer
|
327 |
+
if "skip_optimizer" in hps.train
|
328 |
+
else True,
|
329 |
+
)
|
330 |
+
if not optim_wd.param_groups[0].get("initial_lr"):
|
331 |
+
optim_wd.param_groups[0]["initial_lr"] = wd_resume_lr
|
332 |
+
except Exception as e:
|
333 |
+
print(e)
|
334 |
+
|
335 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
336 |
+
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
337 |
+
)
|
338 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
339 |
+
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
340 |
+
)
|
341 |
+
scheduler_wd = torch.optim.lr_scheduler.ExponentialLR(
|
342 |
+
optim_wd, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
343 |
+
)
|
344 |
+
if net_dur_disc is not None:
|
345 |
+
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
|
346 |
+
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
scheduler_dur_disc = None
|
350 |
+
scaler = GradScaler(enabled=hps.train.bf16_run)
|
351 |
+
|
352 |
+
wl = WavLMLoss(
|
353 |
+
hps.model.slm.model,
|
354 |
+
net_wd,
|
355 |
+
hps.data.sampling_rate,
|
356 |
+
hps.model.slm.sr,
|
357 |
+
).to(local_rank)
|
358 |
+
|
359 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
360 |
+
if rank == 0:
|
361 |
+
train_and_evaluate(
|
362 |
+
rank,
|
363 |
+
local_rank,
|
364 |
+
epoch,
|
365 |
+
hps,
|
366 |
+
[net_g, net_d, net_dur_disc, net_wd, wl],
|
367 |
+
[optim_g, optim_d, optim_dur_disc, optim_wd],
|
368 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd],
|
369 |
+
scaler,
|
370 |
+
[train_loader, eval_loader],
|
371 |
+
logger,
|
372 |
+
[writer, writer_eval],
|
373 |
+
)
|
374 |
+
else:
|
375 |
+
train_and_evaluate(
|
376 |
+
rank,
|
377 |
+
local_rank,
|
378 |
+
epoch,
|
379 |
+
hps,
|
380 |
+
[net_g, net_d, net_dur_disc, net_wd, wl],
|
381 |
+
[optim_g, optim_d, optim_dur_disc, optim_wd],
|
382 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd],
|
383 |
+
scaler,
|
384 |
+
[train_loader, None],
|
385 |
+
None,
|
386 |
+
None,
|
387 |
+
)
|
388 |
+
scheduler_g.step()
|
389 |
+
scheduler_d.step()
|
390 |
+
scheduler_wd.step()
|
391 |
+
if net_dur_disc is not None:
|
392 |
+
scheduler_dur_disc.step()
|
393 |
+
|
394 |
+
|
395 |
+
def train_and_evaluate(
|
396 |
+
rank,
|
397 |
+
local_rank,
|
398 |
+
epoch,
|
399 |
+
hps,
|
400 |
+
nets,
|
401 |
+
optims,
|
402 |
+
schedulers,
|
403 |
+
scaler,
|
404 |
+
loaders,
|
405 |
+
logger,
|
406 |
+
writers,
|
407 |
+
):
|
408 |
+
net_g, net_d, net_dur_disc, net_wd, wl = nets
|
409 |
+
optim_g, optim_d, optim_dur_disc, optim_wd = optims
|
410 |
+
scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd = schedulers
|
411 |
+
train_loader, eval_loader = loaders
|
412 |
+
if writers is not None:
|
413 |
+
writer, writer_eval = writers
|
414 |
+
|
415 |
+
train_loader.batch_sampler.set_epoch(epoch)
|
416 |
+
global global_step
|
417 |
+
|
418 |
+
net_g.train()
|
419 |
+
net_d.train()
|
420 |
+
net_wd.train()
|
421 |
+
if net_dur_disc is not None:
|
422 |
+
net_dur_disc.train()
|
423 |
+
for batch_idx, (
|
424 |
+
x,
|
425 |
+
x_lengths,
|
426 |
+
spec,
|
427 |
+
spec_lengths,
|
428 |
+
y,
|
429 |
+
y_lengths,
|
430 |
+
speakers,
|
431 |
+
tone,
|
432 |
+
language,
|
433 |
+
bert,
|
434 |
+
ja_bert,
|
435 |
+
en_bert,
|
436 |
+
) in enumerate(tqdm(train_loader)):
|
437 |
+
if net_g.module.use_noise_scaled_mas:
|
438 |
+
current_mas_noise_scale = (
|
439 |
+
net_g.module.mas_noise_scale_initial
|
440 |
+
- net_g.module.noise_scale_delta * global_step
|
441 |
+
)
|
442 |
+
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
443 |
+
x, x_lengths = x.cuda(local_rank, non_blocking=True), x_lengths.cuda(
|
444 |
+
local_rank, non_blocking=True
|
445 |
+
)
|
446 |
+
spec, spec_lengths = spec.cuda(
|
447 |
+
local_rank, non_blocking=True
|
448 |
+
), spec_lengths.cuda(local_rank, non_blocking=True)
|
449 |
+
y, y_lengths = y.cuda(local_rank, non_blocking=True), y_lengths.cuda(
|
450 |
+
local_rank, non_blocking=True
|
451 |
+
)
|
452 |
+
speakers = speakers.cuda(local_rank, non_blocking=True)
|
453 |
+
tone = tone.cuda(local_rank, non_blocking=True)
|
454 |
+
language = language.cuda(local_rank, non_blocking=True)
|
455 |
+
bert = bert.cuda(local_rank, non_blocking=True)
|
456 |
+
ja_bert = ja_bert.cuda(local_rank, non_blocking=True)
|
457 |
+
en_bert = en_bert.cuda(local_rank, non_blocking=True)
|
458 |
+
|
459 |
+
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
460 |
+
(
|
461 |
+
y_hat,
|
462 |
+
l_length,
|
463 |
+
attn,
|
464 |
+
ids_slice,
|
465 |
+
x_mask,
|
466 |
+
z_mask,
|
467 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
468 |
+
(hidden_x, logw, logw_, logw_sdp),
|
469 |
+
g,
|
470 |
+
) = net_g(
|
471 |
+
x,
|
472 |
+
x_lengths,
|
473 |
+
spec,
|
474 |
+
spec_lengths,
|
475 |
+
speakers,
|
476 |
+
tone,
|
477 |
+
language,
|
478 |
+
bert,
|
479 |
+
ja_bert,
|
480 |
+
en_bert,
|
481 |
+
)
|
482 |
+
mel = spec_to_mel_torch(
|
483 |
+
spec,
|
484 |
+
hps.data.filter_length,
|
485 |
+
hps.data.n_mel_channels,
|
486 |
+
hps.data.sampling_rate,
|
487 |
+
hps.data.mel_fmin,
|
488 |
+
hps.data.mel_fmax,
|
489 |
+
)
|
490 |
+
y_mel = commons.slice_segments(
|
491 |
+
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
492 |
+
)
|
493 |
+
y_hat_mel = mel_spectrogram_torch(
|
494 |
+
y_hat.squeeze(1).float(),
|
495 |
+
hps.data.filter_length,
|
496 |
+
hps.data.n_mel_channels,
|
497 |
+
hps.data.sampling_rate,
|
498 |
+
hps.data.hop_length,
|
499 |
+
hps.data.win_length,
|
500 |
+
hps.data.mel_fmin,
|
501 |
+
hps.data.mel_fmax,
|
502 |
+
)
|
503 |
+
|
504 |
+
y = commons.slice_segments(
|
505 |
+
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
506 |
+
) # slice
|
507 |
+
|
508 |
+
# Discriminator
|
509 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
510 |
+
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
511 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
512 |
+
y_d_hat_r, y_d_hat_g
|
513 |
+
)
|
514 |
+
loss_disc_all = loss_disc
|
515 |
+
if net_dur_disc is not None:
|
516 |
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
517 |
+
hidden_x.detach(),
|
518 |
+
x_mask.detach(),
|
519 |
+
logw_.detach(),
|
520 |
+
logw.detach(),
|
521 |
+
g.detach(),
|
522 |
+
)
|
523 |
+
y_dur_hat_r_sdp, y_dur_hat_g_sdp = net_dur_disc(
|
524 |
+
hidden_x.detach(),
|
525 |
+
x_mask.detach(),
|
526 |
+
logw_.detach(),
|
527 |
+
logw_sdp.detach(),
|
528 |
+
g.detach(),
|
529 |
+
)
|
530 |
+
y_dur_hat_r = y_dur_hat_r + y_dur_hat_r_sdp
|
531 |
+
y_dur_hat_g = y_dur_hat_g + y_dur_hat_g_sdp
|
532 |
+
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
533 |
+
# TODO: I think need to mean using the mask, but for now, just mean all
|
534 |
+
(
|
535 |
+
loss_dur_disc,
|
536 |
+
losses_dur_disc_r,
|
537 |
+
losses_dur_disc_g,
|
538 |
+
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
539 |
+
loss_dur_disc_all = loss_dur_disc
|
540 |
+
optim_dur_disc.zero_grad()
|
541 |
+
scaler.scale(loss_dur_disc_all).backward()
|
542 |
+
scaler.unscale_(optim_dur_disc)
|
543 |
+
# torch.nn.utils.clip_grad_norm_(
|
544 |
+
# parameters=net_dur_disc.parameters(), max_norm=100
|
545 |
+
# )
|
546 |
+
grad_norm_dur = commons.clip_grad_value_(
|
547 |
+
net_dur_disc.parameters(), None
|
548 |
+
)
|
549 |
+
scaler.step(optim_dur_disc)
|
550 |
+
|
551 |
+
optim_d.zero_grad()
|
552 |
+
scaler.scale(loss_disc_all).backward()
|
553 |
+
scaler.unscale_(optim_d)
|
554 |
+
if getattr(hps.train, "bf16_run", False):
|
555 |
+
torch.nn.utils.clip_grad_norm_(parameters=net_d.parameters(), max_norm=200)
|
556 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
557 |
+
scaler.step(optim_d)
|
558 |
+
|
559 |
+
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
560 |
+
loss_slm = wl.discriminator(
|
561 |
+
y.detach().squeeze(), y_hat.detach().squeeze()
|
562 |
+
).mean()
|
563 |
+
|
564 |
+
optim_wd.zero_grad()
|
565 |
+
scaler.scale(loss_slm).backward()
|
566 |
+
scaler.unscale_(optim_wd)
|
567 |
+
# torch.nn.utils.clip_grad_norm_(parameters=net_wd.parameters(), max_norm=200)
|
568 |
+
grad_norm_wd = commons.clip_grad_value_(net_wd.parameters(), None)
|
569 |
+
scaler.step(optim_wd)
|
570 |
+
|
571 |
+
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
572 |
+
# Generator
|
573 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
574 |
+
if net_dur_disc is not None:
|
575 |
+
_, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw_, logw, g)
|
576 |
+
_, y_dur_hat_g_sdp = net_dur_disc(hidden_x, x_mask, logw_, logw_sdp, g)
|
577 |
+
y_dur_hat_g = y_dur_hat_g + y_dur_hat_g_sdp
|
578 |
+
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
579 |
+
loss_dur = torch.sum(l_length.float())
|
580 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
581 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
582 |
+
|
583 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
584 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
585 |
+
|
586 |
+
loss_lm = wl(y.detach().squeeze(), y_hat.squeeze()).mean()
|
587 |
+
loss_lm_gen = wl.generator(y_hat.squeeze())
|
588 |
+
|
589 |
+
loss_gen_all = (
|
590 |
+
loss_gen
|
591 |
+
+ loss_fm
|
592 |
+
+ loss_mel
|
593 |
+
+ loss_dur
|
594 |
+
+ loss_kl
|
595 |
+
+ loss_lm
|
596 |
+
+ loss_lm_gen
|
597 |
+
)
|
598 |
+
if net_dur_disc is not None:
|
599 |
+
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
600 |
+
loss_gen_all += loss_dur_gen
|
601 |
+
optim_g.zero_grad()
|
602 |
+
scaler.scale(loss_gen_all).backward()
|
603 |
+
scaler.unscale_(optim_g)
|
604 |
+
if getattr(hps.train, "bf16_run", False):
|
605 |
+
torch.nn.utils.clip_grad_norm_(parameters=net_g.parameters(), max_norm=500)
|
606 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
607 |
+
scaler.step(optim_g)
|
608 |
+
scaler.update()
|
609 |
+
|
610 |
+
if rank == 0:
|
611 |
+
if global_step % hps.train.log_interval == 0:
|
612 |
+
lr = optim_g.param_groups[0]["lr"]
|
613 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
614 |
+
logger.info(
|
615 |
+
"Train Epoch: {} [{:.0f}%]".format(
|
616 |
+
epoch, 100.0 * batch_idx / len(train_loader)
|
617 |
+
)
|
618 |
+
)
|
619 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
620 |
+
|
621 |
+
scalar_dict = {
|
622 |
+
"loss/g/total": loss_gen_all,
|
623 |
+
"loss/d/total": loss_disc_all,
|
624 |
+
"loss/wd/total": loss_slm,
|
625 |
+
"learning_rate": lr,
|
626 |
+
"grad_norm_d": grad_norm_d,
|
627 |
+
"grad_norm_g": grad_norm_g,
|
628 |
+
"grad_norm_dur": grad_norm_dur,
|
629 |
+
"grad_norm_wd": grad_norm_wd,
|
630 |
+
}
|
631 |
+
scalar_dict.update(
|
632 |
+
{
|
633 |
+
"loss/g/fm": loss_fm,
|
634 |
+
"loss/g/mel": loss_mel,
|
635 |
+
"loss/g/dur": loss_dur,
|
636 |
+
"loss/g/kl": loss_kl,
|
637 |
+
"loss/g/lm": loss_lm,
|
638 |
+
"loss/g/lm_gen": loss_lm_gen,
|
639 |
+
}
|
640 |
+
)
|
641 |
+
scalar_dict.update(
|
642 |
+
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
643 |
+
)
|
644 |
+
scalar_dict.update(
|
645 |
+
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
646 |
+
)
|
647 |
+
scalar_dict.update(
|
648 |
+
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
649 |
+
)
|
650 |
+
|
651 |
+
if net_dur_disc is not None:
|
652 |
+
scalar_dict.update({"loss/dur_disc/total": loss_dur_disc_all})
|
653 |
+
|
654 |
+
scalar_dict.update(
|
655 |
+
{
|
656 |
+
"loss/dur_disc_g/{}".format(i): v
|
657 |
+
for i, v in enumerate(losses_dur_disc_g)
|
658 |
+
}
|
659 |
+
)
|
660 |
+
scalar_dict.update(
|
661 |
+
{
|
662 |
+
"loss/dur_disc_r/{}".format(i): v
|
663 |
+
for i, v in enumerate(losses_dur_disc_r)
|
664 |
+
}
|
665 |
+
)
|
666 |
+
|
667 |
+
scalar_dict.update({"loss/g/dur_gen": loss_dur_gen})
|
668 |
+
scalar_dict.update(
|
669 |
+
{
|
670 |
+
"loss/g/dur_gen_{}".format(i): v
|
671 |
+
for i, v in enumerate(losses_dur_gen)
|
672 |
+
}
|
673 |
+
)
|
674 |
+
|
675 |
+
image_dict = {
|
676 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
677 |
+
y_mel[0].data.cpu().numpy()
|
678 |
+
),
|
679 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
680 |
+
y_hat_mel[0].data.cpu().numpy()
|
681 |
+
),
|
682 |
+
"all/mel": utils.plot_spectrogram_to_numpy(
|
683 |
+
mel[0].data.cpu().numpy()
|
684 |
+
),
|
685 |
+
"all/attn": utils.plot_alignment_to_numpy(
|
686 |
+
attn[0, 0].data.cpu().numpy()
|
687 |
+
),
|
688 |
+
}
|
689 |
+
utils.summarize(
|
690 |
+
writer=writer,
|
691 |
+
global_step=global_step,
|
692 |
+
images=image_dict,
|
693 |
+
scalars=scalar_dict,
|
694 |
+
)
|
695 |
+
|
696 |
+
if global_step % hps.train.eval_interval == 0:
|
697 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
698 |
+
utils.save_checkpoint(
|
699 |
+
net_g,
|
700 |
+
optim_g,
|
701 |
+
hps.train.learning_rate,
|
702 |
+
epoch,
|
703 |
+
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
704 |
+
)
|
705 |
+
utils.save_checkpoint(
|
706 |
+
net_d,
|
707 |
+
optim_d,
|
708 |
+
hps.train.learning_rate,
|
709 |
+
epoch,
|
710 |
+
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
711 |
+
)
|
712 |
+
utils.save_checkpoint(
|
713 |
+
net_wd,
|
714 |
+
optim_wd,
|
715 |
+
hps.train.learning_rate,
|
716 |
+
epoch,
|
717 |
+
os.path.join(hps.model_dir, "WD_{}.pth".format(global_step)),
|
718 |
+
)
|
719 |
+
if net_dur_disc is not None:
|
720 |
+
utils.save_checkpoint(
|
721 |
+
net_dur_disc,
|
722 |
+
optim_dur_disc,
|
723 |
+
hps.train.learning_rate,
|
724 |
+
epoch,
|
725 |
+
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
|
726 |
+
)
|
727 |
+
keep_ckpts = config.train_ms_config.keep_ckpts
|
728 |
+
if keep_ckpts > 0:
|
729 |
+
utils.clean_checkpoints(
|
730 |
+
path_to_models=hps.model_dir,
|
731 |
+
n_ckpts_to_keep=keep_ckpts,
|
732 |
+
sort_by_time=True,
|
733 |
+
)
|
734 |
+
|
735 |
+
global_step += 1
|
736 |
+
|
737 |
+
gc.collect()
|
738 |
+
torch.cuda.empty_cache()
|
739 |
+
if rank == 0:
|
740 |
+
logger.info("====> Epoch: {}".format(epoch))
|
741 |
+
|
742 |
+
|
743 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
744 |
+
generator.eval()
|
745 |
+
image_dict = {}
|
746 |
+
audio_dict = {}
|
747 |
+
print("Evaluating ...")
|
748 |
+
with torch.no_grad():
|
749 |
+
for batch_idx, (
|
750 |
+
x,
|
751 |
+
x_lengths,
|
752 |
+
spec,
|
753 |
+
spec_lengths,
|
754 |
+
y,
|
755 |
+
y_lengths,
|
756 |
+
speakers,
|
757 |
+
tone,
|
758 |
+
language,
|
759 |
+
bert,
|
760 |
+
ja_bert,
|
761 |
+
en_bert,
|
762 |
+
) in enumerate(eval_loader):
|
763 |
+
x, x_lengths = x.cuda(), x_lengths.cuda()
|
764 |
+
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
765 |
+
y, y_lengths = y.cuda(), y_lengths.cuda()
|
766 |
+
speakers = speakers.cuda()
|
767 |
+
bert = bert.cuda()
|
768 |
+
ja_bert = ja_bert.cuda()
|
769 |
+
en_bert = en_bert.cuda()
|
770 |
+
tone = tone.cuda()
|
771 |
+
language = language.cuda()
|
772 |
+
for use_sdp in [True, False]:
|
773 |
+
y_hat, attn, mask, *_ = generator.module.infer(
|
774 |
+
x,
|
775 |
+
x_lengths,
|
776 |
+
speakers,
|
777 |
+
tone,
|
778 |
+
language,
|
779 |
+
bert,
|
780 |
+
ja_bert,
|
781 |
+
en_bert,
|
782 |
+
y=spec,
|
783 |
+
max_len=1000,
|
784 |
+
sdp_ratio=0.0 if not use_sdp else 1.0,
|
785 |
+
)
|
786 |
+
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
787 |
+
|
788 |
+
mel = spec_to_mel_torch(
|
789 |
+
spec,
|
790 |
+
hps.data.filter_length,
|
791 |
+
hps.data.n_mel_channels,
|
792 |
+
hps.data.sampling_rate,
|
793 |
+
hps.data.mel_fmin,
|
794 |
+
hps.data.mel_fmax,
|
795 |
+
)
|
796 |
+
y_hat_mel = mel_spectrogram_torch(
|
797 |
+
y_hat.squeeze(1).float(),
|
798 |
+
hps.data.filter_length,
|
799 |
+
hps.data.n_mel_channels,
|
800 |
+
hps.data.sampling_rate,
|
801 |
+
hps.data.hop_length,
|
802 |
+
hps.data.win_length,
|
803 |
+
hps.data.mel_fmin,
|
804 |
+
hps.data.mel_fmax,
|
805 |
+
)
|
806 |
+
image_dict.update(
|
807 |
+
{
|
808 |
+
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
809 |
+
y_hat_mel[0].cpu().numpy()
|
810 |
+
)
|
811 |
+
}
|
812 |
+
)
|
813 |
+
audio_dict.update(
|
814 |
+
{
|
815 |
+
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
|
816 |
+
0, :, : y_hat_lengths[0]
|
817 |
+
]
|
818 |
+
}
|
819 |
+
)
|
820 |
+
image_dict.update(
|
821 |
+
{
|
822 |
+
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
823 |
+
mel[0].cpu().numpy()
|
824 |
+
)
|
825 |
+
}
|
826 |
+
)
|
827 |
+
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
|
828 |
+
|
829 |
+
utils.summarize(
|
830 |
+
writer=writer_eval,
|
831 |
+
global_step=global_step,
|
832 |
+
images=image_dict,
|
833 |
+
audios=audio_dict,
|
834 |
+
audio_sampling_rate=hps.data.sampling_rate,
|
835 |
+
)
|
836 |
+
generator.train()
|
837 |
+
|
838 |
+
|
839 |
+
if __name__ == "__main__":
|
840 |
+
run()
|
transforms.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(
|
13 |
+
inputs,
|
14 |
+
unnormalized_widths,
|
15 |
+
unnormalized_heights,
|
16 |
+
unnormalized_derivatives,
|
17 |
+
inverse=False,
|
18 |
+
tails=None,
|
19 |
+
tail_bound=1.0,
|
20 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
21 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
22 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
23 |
+
):
|
24 |
+
if tails is None:
|
25 |
+
spline_fn = rational_quadratic_spline
|
26 |
+
spline_kwargs = {}
|
27 |
+
else:
|
28 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
29 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
30 |
+
|
31 |
+
outputs, logabsdet = spline_fn(
|
32 |
+
inputs=inputs,
|
33 |
+
unnormalized_widths=unnormalized_widths,
|
34 |
+
unnormalized_heights=unnormalized_heights,
|
35 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
36 |
+
inverse=inverse,
|
37 |
+
min_bin_width=min_bin_width,
|
38 |
+
min_bin_height=min_bin_height,
|
39 |
+
min_derivative=min_derivative,
|
40 |
+
**spline_kwargs
|
41 |
+
)
|
42 |
+
return outputs, logabsdet
|
43 |
+
|
44 |
+
|
45 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
46 |
+
bin_locations[..., -1] += eps
|
47 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
48 |
+
|
49 |
+
|
50 |
+
def unconstrained_rational_quadratic_spline(
|
51 |
+
inputs,
|
52 |
+
unnormalized_widths,
|
53 |
+
unnormalized_heights,
|
54 |
+
unnormalized_derivatives,
|
55 |
+
inverse=False,
|
56 |
+
tails="linear",
|
57 |
+
tail_bound=1.0,
|
58 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
59 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
60 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
61 |
+
):
|
62 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
63 |
+
outside_interval_mask = ~inside_interval_mask
|
64 |
+
|
65 |
+
outputs = torch.zeros_like(inputs)
|
66 |
+
logabsdet = torch.zeros_like(inputs)
|
67 |
+
|
68 |
+
if tails == "linear":
|
69 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
70 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
71 |
+
unnormalized_derivatives[..., 0] = constant
|
72 |
+
unnormalized_derivatives[..., -1] = constant
|
73 |
+
|
74 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
75 |
+
logabsdet[outside_interval_mask] = 0
|
76 |
+
else:
|
77 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
78 |
+
|
79 |
+
(
|
80 |
+
outputs[inside_interval_mask],
|
81 |
+
logabsdet[inside_interval_mask],
|
82 |
+
) = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound,
|
89 |
+
right=tail_bound,
|
90 |
+
bottom=-tail_bound,
|
91 |
+
top=tail_bound,
|
92 |
+
min_bin_width=min_bin_width,
|
93 |
+
min_bin_height=min_bin_height,
|
94 |
+
min_derivative=min_derivative,
|
95 |
+
)
|
96 |
+
|
97 |
+
return outputs, logabsdet
|
98 |
+
|
99 |
+
|
100 |
+
def rational_quadratic_spline(
|
101 |
+
inputs,
|
102 |
+
unnormalized_widths,
|
103 |
+
unnormalized_heights,
|
104 |
+
unnormalized_derivatives,
|
105 |
+
inverse=False,
|
106 |
+
left=0.0,
|
107 |
+
right=1.0,
|
108 |
+
bottom=0.0,
|
109 |
+
top=1.0,
|
110 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
111 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
112 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
113 |
+
):
|
114 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
115 |
+
raise ValueError("Input to a transform is not within its domain")
|
116 |
+
|
117 |
+
num_bins = unnormalized_widths.shape[-1]
|
118 |
+
|
119 |
+
if min_bin_width * num_bins > 1.0:
|
120 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
121 |
+
if min_bin_height * num_bins > 1.0:
|
122 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
123 |
+
|
124 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
125 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
126 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
127 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
128 |
+
cumwidths = (right - left) * cumwidths + left
|
129 |
+
cumwidths[..., 0] = left
|
130 |
+
cumwidths[..., -1] = right
|
131 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
132 |
+
|
133 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
134 |
+
|
135 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
136 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
137 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
138 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
139 |
+
cumheights = (top - bottom) * cumheights + bottom
|
140 |
+
cumheights[..., 0] = bottom
|
141 |
+
cumheights[..., -1] = top
|
142 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
143 |
+
|
144 |
+
if inverse:
|
145 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
146 |
+
else:
|
147 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
148 |
+
|
149 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
150 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
153 |
+
delta = heights / widths
|
154 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
155 |
+
|
156 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
157 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
158 |
+
|
159 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
160 |
+
|
161 |
+
if inverse:
|
162 |
+
a = (inputs - input_cumheights) * (
|
163 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
164 |
+
) + input_heights * (input_delta - input_derivatives)
|
165 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
166 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
167 |
+
)
|
168 |
+
c = -input_delta * (inputs - input_cumheights)
|
169 |
+
|
170 |
+
discriminant = b.pow(2) - 4 * a * c
|
171 |
+
assert (discriminant >= 0).all()
|
172 |
+
|
173 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
174 |
+
outputs = root * input_bin_widths + input_cumwidths
|
175 |
+
|
176 |
+
theta_one_minus_theta = root * (1 - root)
|
177 |
+
denominator = input_delta + (
|
178 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
179 |
+
* theta_one_minus_theta
|
180 |
+
)
|
181 |
+
derivative_numerator = input_delta.pow(2) * (
|
182 |
+
input_derivatives_plus_one * root.pow(2)
|
183 |
+
+ 2 * input_delta * theta_one_minus_theta
|
184 |
+
+ input_derivatives * (1 - root).pow(2)
|
185 |
+
)
|
186 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
187 |
+
|
188 |
+
return outputs, -logabsdet
|
189 |
+
else:
|
190 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
191 |
+
theta_one_minus_theta = theta * (1 - theta)
|
192 |
+
|
193 |
+
numerator = input_heights * (
|
194 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
195 |
+
)
|
196 |
+
denominator = input_delta + (
|
197 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
198 |
+
* theta_one_minus_theta
|
199 |
+
)
|
200 |
+
outputs = input_cumheights + numerator / denominator
|
201 |
+
|
202 |
+
derivative_numerator = input_delta.pow(2) * (
|
203 |
+
input_derivatives_plus_one * theta.pow(2)
|
204 |
+
+ 2 * input_delta * theta_one_minus_theta
|
205 |
+
+ input_derivatives * (1 - theta).pow(2)
|
206 |
+
)
|
207 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
208 |
+
|
209 |
+
return outputs, logabsdet
|
update_status.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
lang_dict = {"EN(英文)": "_en", "ZH(中文)": "_zh", "JP(日语)": "_jp"}
|
5 |
+
|
6 |
+
|
7 |
+
def raw_dir_convert_to_path(target_dir: str, lang):
|
8 |
+
res = target_dir.rstrip("/").rstrip("\\")
|
9 |
+
if (not target_dir.startswith("raw")) and (not target_dir.startswith("./raw")):
|
10 |
+
res = os.path.join("./raw", res)
|
11 |
+
if (
|
12 |
+
(not res.endswith("_zh"))
|
13 |
+
and (not res.endswith("_jp"))
|
14 |
+
and (not res.endswith("_en"))
|
15 |
+
):
|
16 |
+
res += lang_dict[lang]
|
17 |
+
return res
|
18 |
+
|
19 |
+
|
20 |
+
def update_g_files():
|
21 |
+
g_files = []
|
22 |
+
cnt = 0
|
23 |
+
for root, dirs, files in os.walk(os.path.abspath("./logs")):
|
24 |
+
for file in files:
|
25 |
+
if file.startswith("G_") and file.endswith(".pth"):
|
26 |
+
g_files.append(os.path.join(root, file))
|
27 |
+
cnt += 1
|
28 |
+
print(g_files)
|
29 |
+
return f"更新模型列表完成, 共找到{cnt}个模型", gr.Dropdown.update(choices=g_files)
|
30 |
+
|
31 |
+
|
32 |
+
def update_c_files():
|
33 |
+
c_files = []
|
34 |
+
cnt = 0
|
35 |
+
for root, dirs, files in os.walk(os.path.abspath("./logs")):
|
36 |
+
for file in files:
|
37 |
+
if file.startswith("config.json"):
|
38 |
+
c_files.append(os.path.join(root, file))
|
39 |
+
cnt += 1
|
40 |
+
print(c_files)
|
41 |
+
return f"更新模型列表完成, 共找到{cnt}个配置文件", gr.Dropdown.update(choices=c_files)
|
42 |
+
|
43 |
+
|
44 |
+
def update_model_folders():
|
45 |
+
subdirs = []
|
46 |
+
cnt = 0
|
47 |
+
for root, dirs, files in os.walk(os.path.abspath("./logs")):
|
48 |
+
for dir_name in dirs:
|
49 |
+
if os.path.basename(dir_name) != "eval":
|
50 |
+
subdirs.append(os.path.join(root, dir_name))
|
51 |
+
cnt += 1
|
52 |
+
print(subdirs)
|
53 |
+
return f"更新模型文件夹列表完成, 共找到{cnt}个文件夹", gr.Dropdown.update(choices=subdirs)
|
54 |
+
|
55 |
+
|
56 |
+
def update_wav_lab_pairs():
|
57 |
+
wav_count = tot_count = 0
|
58 |
+
for root, _, files in os.walk("./raw"):
|
59 |
+
for file in files:
|
60 |
+
# print(file)
|
61 |
+
file_path = os.path.join(root, file)
|
62 |
+
if file.lower().endswith(".wav"):
|
63 |
+
lab_file = os.path.splitext(file_path)[0] + ".lab"
|
64 |
+
if os.path.exists(lab_file):
|
65 |
+
wav_count += 1
|
66 |
+
tot_count += 1
|
67 |
+
return f"{wav_count} / {tot_count}"
|
68 |
+
|
69 |
+
|
70 |
+
def update_raw_folders():
|
71 |
+
subdirs = []
|
72 |
+
cnt = 0
|
73 |
+
script_path = os.path.dirname(os.path.abspath(__file__)) # 获取当前脚本的绝对路径
|
74 |
+
raw_path = os.path.join(script_path, "raw")
|
75 |
+
print(raw_path)
|
76 |
+
os.makedirs(raw_path, exist_ok=True)
|
77 |
+
for root, dirs, files in os.walk(raw_path):
|
78 |
+
for dir_name in dirs:
|
79 |
+
relative_path = os.path.relpath(
|
80 |
+
os.path.join(root, dir_name), script_path
|
81 |
+
) # 获取相对路径
|
82 |
+
subdirs.append(relative_path)
|
83 |
+
cnt += 1
|
84 |
+
print(subdirs)
|
85 |
+
return (
|
86 |
+
f"更新raw音频文件夹列表完成, 共找到{cnt}个文件夹",
|
87 |
+
gr.Dropdown.update(choices=subdirs),
|
88 |
+
gr.Textbox.update(value=update_wav_lab_pairs()),
|
89 |
+
)
|
utils.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import argparse
|
4 |
+
import logging
|
5 |
+
import json
|
6 |
+
import shutil
|
7 |
+
import subprocess
|
8 |
+
import numpy as np
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from scipy.io.wavfile import read
|
11 |
+
import torch
|
12 |
+
import re
|
13 |
+
|
14 |
+
MATPLOTLIB_FLAG = False
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
def download_emo_models(mirror, repo_id, model_name):
|
20 |
+
if mirror == "openi":
|
21 |
+
import openi
|
22 |
+
|
23 |
+
openi.model.download_model(
|
24 |
+
"Stardust_minus/Bert-VITS2",
|
25 |
+
repo_id.split("/")[-1],
|
26 |
+
"./emotional",
|
27 |
+
)
|
28 |
+
else:
|
29 |
+
hf_hub_download(
|
30 |
+
repo_id,
|
31 |
+
"pytorch_model.bin",
|
32 |
+
local_dir=model_name,
|
33 |
+
local_dir_use_symlinks=False,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def download_checkpoint(
|
38 |
+
dir_path, repo_config, token=None, regex="G_*.pth", mirror="openi"
|
39 |
+
):
|
40 |
+
repo_id = repo_config["repo_id"]
|
41 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
42 |
+
if f_list:
|
43 |
+
print("Use existed model, skip downloading.")
|
44 |
+
return
|
45 |
+
if mirror.lower() == "openi":
|
46 |
+
import openi
|
47 |
+
|
48 |
+
kwargs = {"token": token} if token else {}
|
49 |
+
openi.login(**kwargs)
|
50 |
+
|
51 |
+
model_image = repo_config["model_image"]
|
52 |
+
openi.model.download_model(repo_id, model_image, dir_path)
|
53 |
+
|
54 |
+
fs = glob.glob(os.path.join(dir_path, model_image, "*.pth"))
|
55 |
+
for file in fs:
|
56 |
+
shutil.move(file, dir_path)
|
57 |
+
shutil.rmtree(os.path.join(dir_path, model_image))
|
58 |
+
else:
|
59 |
+
for file in ["DUR_0.pth", "D_0.pth", "G_0.pth"]:
|
60 |
+
hf_hub_download(
|
61 |
+
repo_id, file, local_dir=dir_path, local_dir_use_symlinks=False
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
66 |
+
assert os.path.isfile(checkpoint_path)
|
67 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
68 |
+
iteration = checkpoint_dict["iteration"]
|
69 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
70 |
+
if (
|
71 |
+
optimizer is not None
|
72 |
+
and not skip_optimizer
|
73 |
+
and checkpoint_dict["optimizer"] is not None
|
74 |
+
):
|
75 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
76 |
+
elif optimizer is None and not skip_optimizer:
|
77 |
+
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
78 |
+
new_opt_dict = optimizer.state_dict()
|
79 |
+
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
80 |
+
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
81 |
+
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
82 |
+
optimizer.load_state_dict(new_opt_dict)
|
83 |
+
|
84 |
+
saved_state_dict = checkpoint_dict["model"]
|
85 |
+
if hasattr(model, "module"):
|
86 |
+
state_dict = model.module.state_dict()
|
87 |
+
else:
|
88 |
+
state_dict = model.state_dict()
|
89 |
+
|
90 |
+
new_state_dict = {}
|
91 |
+
for k, v in state_dict.items():
|
92 |
+
try:
|
93 |
+
# assert "emb_g" not in k
|
94 |
+
new_state_dict[k] = saved_state_dict[k]
|
95 |
+
assert saved_state_dict[k].shape == v.shape, (
|
96 |
+
saved_state_dict[k].shape,
|
97 |
+
v.shape,
|
98 |
+
)
|
99 |
+
except:
|
100 |
+
# For upgrading from the old version
|
101 |
+
if "ja_bert_proj" in k:
|
102 |
+
v = torch.zeros_like(v)
|
103 |
+
logger.warn(
|
104 |
+
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
logger.error(f"{k} is not in the checkpoint")
|
108 |
+
|
109 |
+
new_state_dict[k] = v
|
110 |
+
|
111 |
+
if hasattr(model, "module"):
|
112 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
113 |
+
else:
|
114 |
+
model.load_state_dict(new_state_dict, strict=False)
|
115 |
+
|
116 |
+
logger.info(
|
117 |
+
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
118 |
+
)
|
119 |
+
|
120 |
+
return model, optimizer, learning_rate, iteration
|
121 |
+
|
122 |
+
|
123 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
124 |
+
logger.info(
|
125 |
+
"Saving model and optimizer state at iteration {} to {}".format(
|
126 |
+
iteration, checkpoint_path
|
127 |
+
)
|
128 |
+
)
|
129 |
+
if hasattr(model, "module"):
|
130 |
+
state_dict = model.module.state_dict()
|
131 |
+
else:
|
132 |
+
state_dict = model.state_dict()
|
133 |
+
torch.save(
|
134 |
+
{
|
135 |
+
"model": state_dict,
|
136 |
+
"iteration": iteration,
|
137 |
+
"optimizer": optimizer.state_dict(),
|
138 |
+
"learning_rate": learning_rate,
|
139 |
+
},
|
140 |
+
checkpoint_path,
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
def summarize(
|
145 |
+
writer,
|
146 |
+
global_step,
|
147 |
+
scalars={},
|
148 |
+
histograms={},
|
149 |
+
images={},
|
150 |
+
audios={},
|
151 |
+
audio_sampling_rate=22050,
|
152 |
+
):
|
153 |
+
for k, v in scalars.items():
|
154 |
+
writer.add_scalar(k, v, global_step)
|
155 |
+
for k, v in histograms.items():
|
156 |
+
writer.add_histogram(k, v, global_step)
|
157 |
+
for k, v in images.items():
|
158 |
+
writer.add_image(k, v, global_step, dataformats="HWC")
|
159 |
+
for k, v in audios.items():
|
160 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
161 |
+
|
162 |
+
|
163 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
164 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
165 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
166 |
+
x = f_list[-1]
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
171 |
+
global MATPLOTLIB_FLAG
|
172 |
+
if not MATPLOTLIB_FLAG:
|
173 |
+
import matplotlib
|
174 |
+
|
175 |
+
matplotlib.use("Agg")
|
176 |
+
MATPLOTLIB_FLAG = True
|
177 |
+
mpl_logger = logging.getLogger("matplotlib")
|
178 |
+
mpl_logger.setLevel(logging.WARNING)
|
179 |
+
import matplotlib.pylab as plt
|
180 |
+
import numpy as np
|
181 |
+
|
182 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
183 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
184 |
+
plt.colorbar(im, ax=ax)
|
185 |
+
plt.xlabel("Frames")
|
186 |
+
plt.ylabel("Channels")
|
187 |
+
plt.tight_layout()
|
188 |
+
|
189 |
+
fig.canvas.draw()
|
190 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
191 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
192 |
+
plt.close()
|
193 |
+
return data
|
194 |
+
|
195 |
+
|
196 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
197 |
+
global MATPLOTLIB_FLAG
|
198 |
+
if not MATPLOTLIB_FLAG:
|
199 |
+
import matplotlib
|
200 |
+
|
201 |
+
matplotlib.use("Agg")
|
202 |
+
MATPLOTLIB_FLAG = True
|
203 |
+
mpl_logger = logging.getLogger("matplotlib")
|
204 |
+
mpl_logger.setLevel(logging.WARNING)
|
205 |
+
import matplotlib.pylab as plt
|
206 |
+
import numpy as np
|
207 |
+
|
208 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
209 |
+
im = ax.imshow(
|
210 |
+
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
211 |
+
)
|
212 |
+
fig.colorbar(im, ax=ax)
|
213 |
+
xlabel = "Decoder timestep"
|
214 |
+
if info is not None:
|
215 |
+
xlabel += "\n\n" + info
|
216 |
+
plt.xlabel(xlabel)
|
217 |
+
plt.ylabel("Encoder timestep")
|
218 |
+
plt.tight_layout()
|
219 |
+
|
220 |
+
fig.canvas.draw()
|
221 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
222 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
223 |
+
plt.close()
|
224 |
+
return data
|
225 |
+
|
226 |
+
|
227 |
+
def load_wav_to_torch(full_path):
|
228 |
+
sampling_rate, data = read(full_path)
|
229 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
230 |
+
|
231 |
+
|
232 |
+
def load_filepaths_and_text(filename, split="|"):
|
233 |
+
with open(filename, encoding="utf-8") as f:
|
234 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
235 |
+
return filepaths_and_text
|
236 |
+
|
237 |
+
|
238 |
+
def get_hparams(init=True):
|
239 |
+
parser = argparse.ArgumentParser()
|
240 |
+
parser.add_argument(
|
241 |
+
"-c",
|
242 |
+
"--config",
|
243 |
+
type=str,
|
244 |
+
default="./configs/base.json",
|
245 |
+
help="JSON file for configuration",
|
246 |
+
)
|
247 |
+
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
248 |
+
|
249 |
+
args = parser.parse_args()
|
250 |
+
model_dir = os.path.join("./logs", args.model)
|
251 |
+
|
252 |
+
if not os.path.exists(model_dir):
|
253 |
+
os.makedirs(model_dir)
|
254 |
+
|
255 |
+
config_path = args.config
|
256 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
257 |
+
if init:
|
258 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
259 |
+
data = f.read()
|
260 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
261 |
+
f.write(data)
|
262 |
+
else:
|
263 |
+
with open(config_save_path, "r", vencoding="utf-8") as f:
|
264 |
+
data = f.read()
|
265 |
+
config = json.loads(data)
|
266 |
+
hparams = HParams(**config)
|
267 |
+
hparams.model_dir = model_dir
|
268 |
+
return hparams
|
269 |
+
|
270 |
+
|
271 |
+
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
272 |
+
"""Freeing up space by deleting saved ckpts
|
273 |
+
|
274 |
+
Arguments:
|
275 |
+
path_to_models -- Path to the model directory
|
276 |
+
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
277 |
+
sort_by_time -- True -> chronologically delete ckpts
|
278 |
+
False -> lexicographically delete ckpts
|
279 |
+
"""
|
280 |
+
import re
|
281 |
+
|
282 |
+
ckpts_files = [
|
283 |
+
f
|
284 |
+
for f in os.listdir(path_to_models)
|
285 |
+
if os.path.isfile(os.path.join(path_to_models, f))
|
286 |
+
]
|
287 |
+
|
288 |
+
def name_key(_f):
|
289 |
+
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
290 |
+
|
291 |
+
def time_key(_f):
|
292 |
+
return os.path.getmtime(os.path.join(path_to_models, _f))
|
293 |
+
|
294 |
+
sort_key = time_key if sort_by_time else name_key
|
295 |
+
|
296 |
+
def x_sorted(_x):
|
297 |
+
return sorted(
|
298 |
+
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
299 |
+
key=sort_key,
|
300 |
+
)
|
301 |
+
|
302 |
+
to_del = [
|
303 |
+
os.path.join(path_to_models, fn)
|
304 |
+
for fn in (
|
305 |
+
x_sorted("G")[:-n_ckpts_to_keep]
|
306 |
+
+ x_sorted("D")[:-n_ckpts_to_keep]
|
307 |
+
+ x_sorted("WD")[:-n_ckpts_to_keep]
|
308 |
+
)
|
309 |
+
]
|
310 |
+
|
311 |
+
def del_info(fn):
|
312 |
+
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
313 |
+
|
314 |
+
def del_routine(x):
|
315 |
+
return [os.remove(x), del_info(x)]
|
316 |
+
|
317 |
+
[del_routine(fn) for fn in to_del]
|
318 |
+
|
319 |
+
|
320 |
+
def get_hparams_from_dir(model_dir):
|
321 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
322 |
+
with open(config_save_path, "r", encoding="utf-8") as f:
|
323 |
+
data = f.read()
|
324 |
+
config = json.loads(data)
|
325 |
+
|
326 |
+
hparams = HParams(**config)
|
327 |
+
hparams.model_dir = model_dir
|
328 |
+
return hparams
|
329 |
+
|
330 |
+
|
331 |
+
def get_hparams_from_file(config_path):
|
332 |
+
# print("config_path: ", config_path)
|
333 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
334 |
+
data = f.read()
|
335 |
+
config = json.loads(data)
|
336 |
+
|
337 |
+
hparams = HParams(**config)
|
338 |
+
return hparams
|
339 |
+
|
340 |
+
|
341 |
+
def check_git_hash(model_dir):
|
342 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
343 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
344 |
+
logger.warn(
|
345 |
+
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
346 |
+
source_dir
|
347 |
+
)
|
348 |
+
)
|
349 |
+
return
|
350 |
+
|
351 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
352 |
+
|
353 |
+
path = os.path.join(model_dir, "githash")
|
354 |
+
if os.path.exists(path):
|
355 |
+
saved_hash = open(path).read()
|
356 |
+
if saved_hash != cur_hash:
|
357 |
+
logger.warn(
|
358 |
+
"git hash values are different. {}(saved) != {}(current)".format(
|
359 |
+
saved_hash[:8], cur_hash[:8]
|
360 |
+
)
|
361 |
+
)
|
362 |
+
else:
|
363 |
+
open(path, "w").write(cur_hash)
|
364 |
+
|
365 |
+
|
366 |
+
def get_logger(model_dir, filename="train.log"):
|
367 |
+
global logger
|
368 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
369 |
+
logger.setLevel(logging.DEBUG)
|
370 |
+
|
371 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
372 |
+
if not os.path.exists(model_dir):
|
373 |
+
os.makedirs(model_dir)
|
374 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
375 |
+
h.setLevel(logging.DEBUG)
|
376 |
+
h.setFormatter(formatter)
|
377 |
+
logger.addHandler(h)
|
378 |
+
return logger
|
379 |
+
|
380 |
+
|
381 |
+
class HParams:
|
382 |
+
def __init__(self, **kwargs):
|
383 |
+
for k, v in kwargs.items():
|
384 |
+
if type(v) == dict:
|
385 |
+
v = HParams(**v)
|
386 |
+
self[k] = v
|
387 |
+
|
388 |
+
def keys(self):
|
389 |
+
return self.__dict__.keys()
|
390 |
+
|
391 |
+
def items(self):
|
392 |
+
return self.__dict__.items()
|
393 |
+
|
394 |
+
def values(self):
|
395 |
+
return self.__dict__.values()
|
396 |
+
|
397 |
+
def __len__(self):
|
398 |
+
return len(self.__dict__)
|
399 |
+
|
400 |
+
def __getitem__(self, key):
|
401 |
+
return getattr(self, key)
|
402 |
+
|
403 |
+
def __setitem__(self, key, value):
|
404 |
+
return setattr(self, key, value)
|
405 |
+
|
406 |
+
def __contains__(self, key):
|
407 |
+
return key in self.__dict__
|
408 |
+
|
409 |
+
def __repr__(self):
|
410 |
+
return self.__dict__.__repr__()
|
411 |
+
|
412 |
+
|
413 |
+
def load_model(model_path, config_path):
|
414 |
+
hps = get_hparams_from_file(config_path)
|
415 |
+
net = SynthesizerTrn(
|
416 |
+
# len(symbols),
|
417 |
+
108,
|
418 |
+
hps.data.filter_length // 2 + 1,
|
419 |
+
hps.train.segment_size // hps.data.hop_length,
|
420 |
+
n_speakers=hps.data.n_speakers,
|
421 |
+
**hps.model,
|
422 |
+
).to("cpu")
|
423 |
+
_ = net.eval()
|
424 |
+
_ = load_checkpoint(model_path, net, None, skip_optimizer=True)
|
425 |
+
return net
|
426 |
+
|
427 |
+
|
428 |
+
def mix_model(
|
429 |
+
network1, network2, output_path, voice_ratio=(0.5, 0.5), tone_ratio=(0.5, 0.5)
|
430 |
+
):
|
431 |
+
if hasattr(network1, "module"):
|
432 |
+
state_dict1 = network1.module.state_dict()
|
433 |
+
state_dict2 = network2.module.state_dict()
|
434 |
+
else:
|
435 |
+
state_dict1 = network1.state_dict()
|
436 |
+
state_dict2 = network2.state_dict()
|
437 |
+
for k in state_dict1.keys():
|
438 |
+
if k not in state_dict2.keys():
|
439 |
+
continue
|
440 |
+
if "enc_p" in k:
|
441 |
+
state_dict1[k] = (
|
442 |
+
state_dict1[k].clone() * tone_ratio[0]
|
443 |
+
+ state_dict2[k].clone() * tone_ratio[1]
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
state_dict1[k] = (
|
447 |
+
state_dict1[k].clone() * voice_ratio[0]
|
448 |
+
+ state_dict2[k].clone() * voice_ratio[1]
|
449 |
+
)
|
450 |
+
for k in state_dict2.keys():
|
451 |
+
if k not in state_dict1.keys():
|
452 |
+
state_dict1[k] = state_dict2[k].clone()
|
453 |
+
torch.save(
|
454 |
+
{"model": state_dict1, "iteration": 0, "optimizer": None, "learning_rate": 0},
|
455 |
+
output_path,
|
456 |
+
)
|
457 |
+
|
458 |
+
|
459 |
+
def get_steps(model_path):
|
460 |
+
matches = re.findall(r"\d+", model_path)
|
461 |
+
return matches[-1] if matches else None
|
webui_preprocess.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import webbrowser
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import subprocess
|
6 |
+
import shutil
|
7 |
+
|
8 |
+
|
9 |
+
def get_path(data_dir):
|
10 |
+
start_path = os.path.join("./data", data_dir)
|
11 |
+
lbl_path = os.path.join(start_path, "esd.list")
|
12 |
+
train_path = os.path.join(start_path, "train.list")
|
13 |
+
val_path = os.path.join(start_path, "val.list")
|
14 |
+
config_path = os.path.join(start_path, "configs", "config.json")
|
15 |
+
return start_path, lbl_path, train_path, val_path, config_path
|
16 |
+
|
17 |
+
|
18 |
+
def generate_config(data_dir, batch_size):
|
19 |
+
assert data_dir != "", "数据集名称不能为空"
|
20 |
+
start_path, _, train_path, val_path, config_path = get_path(data_dir)
|
21 |
+
if os.path.isfile(config_path):
|
22 |
+
config = json.load(open(config_path, "r", encoding="utf-8"))
|
23 |
+
else:
|
24 |
+
config = json.load(open("configs/config.json", "r", encoding="utf-8"))
|
25 |
+
config["data"]["training_files"] = train_path
|
26 |
+
config["data"]["validation_files"] = val_path
|
27 |
+
config["train"]["batch_size"] = batch_size
|
28 |
+
out_path = os.path.join(start_path, "configs")
|
29 |
+
if not os.path.isdir(out_path):
|
30 |
+
os.mkdir(out_path)
|
31 |
+
model_path = os.path.join(start_path, "models")
|
32 |
+
if not os.path.isdir(model_path):
|
33 |
+
os.mkdir(model_path)
|
34 |
+
with open(config_path, "w", encoding="utf-8") as f:
|
35 |
+
json.dump(config, f, indent=4)
|
36 |
+
if not os.path.exists("config.yml"):
|
37 |
+
shutil.copy(src="default_config.yml", dst="config.yml")
|
38 |
+
return "配置文件生成完成"
|
39 |
+
|
40 |
+
|
41 |
+
def resample(data_dir):
|
42 |
+
assert data_dir != "", "数据集名称不能为空"
|
43 |
+
start_path, _, _, _, config_path = get_path(data_dir)
|
44 |
+
in_dir = os.path.join(start_path, "raw")
|
45 |
+
out_dir = os.path.join(start_path, "wavs")
|
46 |
+
subprocess.run(
|
47 |
+
f"python resample_legacy.py "
|
48 |
+
f"--sr 44100 "
|
49 |
+
f"--in_dir {in_dir} "
|
50 |
+
f"--out_dir {out_dir} ",
|
51 |
+
shell=True,
|
52 |
+
)
|
53 |
+
return "音频文件预处理完成"
|
54 |
+
|
55 |
+
|
56 |
+
def preprocess_text(data_dir):
|
57 |
+
assert data_dir != "", "数据集名称不能为空"
|
58 |
+
start_path, lbl_path, train_path, val_path, config_path = get_path(data_dir)
|
59 |
+
lines = open(lbl_path, "r", encoding="utf-8").readlines()
|
60 |
+
with open(lbl_path, "w", encoding="utf-8") as f:
|
61 |
+
for line in lines:
|
62 |
+
path, spk, language, text = line.strip().split("|")
|
63 |
+
path = os.path.join(start_path, "wavs", os.path.basename(path)).replace(
|
64 |
+
"\\", "/"
|
65 |
+
)
|
66 |
+
f.writelines(f"{path}|{spk}|{language}|{text}\n")
|
67 |
+
subprocess.run(
|
68 |
+
f"python preprocess_text.py "
|
69 |
+
f"--transcription-path {lbl_path} "
|
70 |
+
f"--train-path {train_path} "
|
71 |
+
f"--val-path {val_path} "
|
72 |
+
f"--config-path {config_path}",
|
73 |
+
shell=True,
|
74 |
+
)
|
75 |
+
return "标签文件预处理完成"
|
76 |
+
|
77 |
+
|
78 |
+
def bert_gen(data_dir):
|
79 |
+
assert data_dir != "", "数据集名称不能为空"
|
80 |
+
_, _, _, _, config_path = get_path(data_dir)
|
81 |
+
subprocess.run(
|
82 |
+
f"python bert_gen.py " f"--config {config_path}",
|
83 |
+
shell=True,
|
84 |
+
)
|
85 |
+
return "BERT 特征文件生成完成"
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
with gr.Blocks() as app:
|
90 |
+
with gr.Row():
|
91 |
+
with gr.Column():
|
92 |
+
_ = gr.Markdown(
|
93 |
+
value="# Bert-VITS2 数据预处理\n"
|
94 |
+
"## 预先准备:\n"
|
95 |
+
"下载 BERT 和 WavLM 模型:\n"
|
96 |
+
"- [中文 RoBERTa](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)\n"
|
97 |
+
"- [日文 DeBERTa](https://huggingface.co/ku-nlp/deberta-v2-large-japanese-char-wwm)\n"
|
98 |
+
"- [英文 DeBERTa](https://huggingface.co/microsoft/deberta-v3-large)\n"
|
99 |
+
"- [WavLM](https://huggingface.co/microsoft/wavlm-base-plus)\n"
|
100 |
+
"\n"
|
101 |
+
"将 BERT 模型放置到 `bert` 文件夹下,WavLM 模型放置到 `slm` 文件夹下,覆盖同名文件夹。\n"
|
102 |
+
"\n"
|
103 |
+
"数据准备:\n"
|
104 |
+
"将数据放置在 data 文件夹下,按照如下结构组织:\n"
|
105 |
+
"\n"
|
106 |
+
"```\n"
|
107 |
+
"├── data\n"
|
108 |
+
"│ ├── {你的数据集名称}\n"
|
109 |
+
"│ │ ├── esd.list\n"
|
110 |
+
"│ │ ├── raw\n"
|
111 |
+
"│ │ │ ├── ****.wav\n"
|
112 |
+
"│ │ │ ├── ****.wav\n"
|
113 |
+
"│ │ │ ├── ...\n"
|
114 |
+
"```\n"
|
115 |
+
"\n"
|
116 |
+
"其中,`raw` 文件夹下保存所有的音频文件,`esd.list` 文件为标签文本,格式为\n"
|
117 |
+
"\n"
|
118 |
+
"```\n"
|
119 |
+
"****.wav|{说话人名}|{语言 ID}|{标签文本}\n"
|
120 |
+
"```\n"
|
121 |
+
"\n"
|
122 |
+
"例如:\n"
|
123 |
+
"```\n"
|
124 |
+
"vo_ABDLQ001_1_paimon_02.wav|派蒙|ZH|没什么没什么,只是���时他总是站在这里,有点奇怪而已。\n"
|
125 |
+
"noa_501_0001.wav|NOA|JP|そうだね、油断しないのはとても大事なことだと思う\n"
|
126 |
+
"Albedo_vo_ABDLQ002_4_albedo_01.wav|Albedo|EN|Who are you? Why did you alarm them?\n"
|
127 |
+
"...\n"
|
128 |
+
"```\n"
|
129 |
+
)
|
130 |
+
data_dir = gr.Textbox(
|
131 |
+
label="数据集名称",
|
132 |
+
placeholder="你放置在 data 文件夹下的数据集所在文件夹的名称,如 data/genshin 则填 genshin",
|
133 |
+
)
|
134 |
+
info = gr.Textbox(label="状态信息")
|
135 |
+
_ = gr.Markdown(value="## 第一步:生成配置文件")
|
136 |
+
with gr.Row():
|
137 |
+
batch_size = gr.Slider(
|
138 |
+
label="批大小(Batch size):24 GB 显存可用 12",
|
139 |
+
value=8,
|
140 |
+
minimum=1,
|
141 |
+
maximum=64,
|
142 |
+
step=1,
|
143 |
+
)
|
144 |
+
generate_config_btn = gr.Button(value="执行", variant="primary")
|
145 |
+
_ = gr.Markdown(value="## 第二步:预处理音频文件")
|
146 |
+
resample_btn = gr.Button(value="执行", variant="primary")
|
147 |
+
_ = gr.Markdown(value="## 第三步:预处理标签文件")
|
148 |
+
preprocess_text_btn = gr.Button(value="执行", variant="primary")
|
149 |
+
_ = gr.Markdown(value="## 第四步:生成 BERT 特征文件")
|
150 |
+
bert_gen_btn = gr.Button(value="执行", variant="primary")
|
151 |
+
_ = gr.Markdown(
|
152 |
+
value="## 训练模型及部署:\n"
|
153 |
+
"修改根目录下的 `config.yml` 中 `dataset_path` 一项为 `data/{你的数据集名称}`\n"
|
154 |
+
"- 训练:将[预训练模型文件](https://openi.pcl.ac.cn/Stardust_minus/Bert-VITS2/modelmanage/show_model)(`D_0.pth`、`DUR_0.pth`、`WD_0.pth` 和 `G_0.pth`)放到 `data/{你的数据集名称}/models` 文件夹下,执行 `torchrun --nproc_per_node=1 train_ms.py` 命令(多卡运行可参考 `run_MnodesAndMgpus.sh` 中的命令。\n"
|
155 |
+
"- 部署:修改根目录下的 `config.yml` 中 `webui` 下 `model` 一项为 `models/{权重文件名}.pth` (如 G_10000.pth),然后执行 `python webui.py`"
|
156 |
+
)
|
157 |
+
|
158 |
+
generate_config_btn.click(
|
159 |
+
generate_config, inputs=[data_dir, batch_size], outputs=[info]
|
160 |
+
)
|
161 |
+
resample_btn.click(resample, inputs=[data_dir], outputs=[info])
|
162 |
+
preprocess_text_btn.click(preprocess_text, inputs=[data_dir], outputs=[info])
|
163 |
+
bert_gen_btn.click(bert_gen, inputs=[data_dir], outputs=[info])
|
164 |
+
|
165 |
+
webbrowser.open("http://127.0.0.1:7860")
|
166 |
+
app.launch(share=False, server_port=7860)
|