evijit HF staff commited on
Commit
c16c6ea
1 Parent(s): 1ff1569

Delete app copy.py

Browse files
Files changed (1) hide show
  1. app copy.py +0 -149
app copy.py DELETED
@@ -1,149 +0,0 @@
1
- import gradio as gr
2
- import torch
3
- from diffusers import AutoPipelineForText2Image
4
- from transformers import BlipProcessor, BlipForConditionalGeneration
5
- from pathlib import Path
6
- import stone
7
- import requests
8
- import io
9
- import os
10
- from PIL import Image
11
- import spaces
12
-
13
- import matplotlib.pyplot as plt
14
- import numpy as np
15
- from matplotlib.colors import hex2color
16
-
17
-
18
- pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
19
- "stabilityai/sdxl-turbo",
20
- torch_dtype=torch.float16,
21
- variant="fp16",
22
- )
23
- pipeline_text2image = pipeline_text2image.to("cuda")
24
-
25
-
26
- @spaces.GPU
27
- def getimgen(prompt):
28
-
29
- return pipeline_text2image(
30
- prompt=prompt,
31
- guidance_scale=0.0,
32
- num_inference_steps=2
33
- ).images[0]
34
-
35
-
36
- blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
37
- blip_model = BlipForConditionalGeneration.from_pretrained(
38
- "Salesforce/blip-image-captioning-large",
39
- torch_dtype=torch.float16
40
- ).to("cuda")
41
-
42
-
43
- @spaces.GPU
44
- def blip_caption_image(image, prefix):
45
- inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
46
- out = blip_model.generate(**inputs)
47
- return blip_processor.decode(out[0], skip_special_tokens=True)
48
-
49
- def genderfromcaption(caption):
50
- cc = caption.split()
51
- if "man" in cc or "boy" in cc:
52
- return "Man"
53
- elif "woman" in cc or "girl" in cc:
54
- return "Woman"
55
- return "Unsure"
56
-
57
- def genderplot(genlist):
58
- order = ["Man", "Woman", "Unsure"]
59
-
60
- # Sort the list based on the order of keys
61
- words = sorted(genlist, key=lambda x: order.index(x))
62
-
63
- # Define colors for each category
64
- colors = {"Man": "lightgreen", "Woman": "darkgreen", "Unsure": "lightgrey"}
65
-
66
- # Map each word to its corresponding color
67
- word_colors = [colors[word] for word in words]
68
-
69
- # Plot the colors in a grid with reduced spacing
70
- fig, axes = plt.subplots(2, 5, figsize=(5,5))
71
-
72
- # Adjust spacing between subplots
73
- plt.subplots_adjust(hspace=0.1, wspace=0.1)
74
-
75
- for i, ax in enumerate(axes.flat):
76
- ax.set_axis_off()
77
- ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=word_colors[i]))
78
-
79
- return fig
80
-
81
- def skintoneplot(hex_codes):
82
- # Convert hex codes to RGB values
83
- rgb_values = [hex2color(hex_code) for hex_code in hex_codes]
84
-
85
- # Calculate luminance for each color
86
- luminance_values = [0.299 * r + 0.587 * g + 0.114 * b for r, g, b in rgb_values]
87
-
88
- # Sort hex codes based on luminance in descending order (dark to light)
89
- sorted_hex_codes = [code for _, code in sorted(zip(luminance_values, hex_codes), reverse=True)]
90
-
91
- # Plot the colors in a grid with reduced spacing
92
- fig, axes = plt.subplots(2, 5, figsize=(5,5))
93
-
94
- # Adjust spacing between subplots
95
- plt.subplots_adjust(hspace=0.1, wspace=0.1)
96
-
97
- for i, ax in enumerate(axes.flat):
98
- ax.set_axis_off()
99
- ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=sorted_hex_codes[i]))
100
-
101
- return fig
102
-
103
- @spaces.GPU
104
- def generate_images_plots(prompt):
105
- foldername = "temp"
106
- # Generate 10 images
107
- images = [getimgen(prompt) for _ in range(10)]
108
-
109
- Path(foldername).mkdir(parents=True, exist_ok=True)
110
-
111
- genders = []
112
- skintones = []
113
-
114
- for image, i in zip(images, range(10)):
115
- prompt_prefix = "photo of a "
116
- caption = blip_caption_image(image, prefix=prompt_prefix)
117
- image.save(f"{foldername}/image_{i}.png")
118
- try:
119
- skintoneres = stone.process(f"{foldername}/image_{i}.png", return_report_image=False)
120
- tone = skintoneres['faces'][0]['dominant_colors'][0]['color']
121
- skintones.append(tone)
122
- except:
123
- skintones.append(None)
124
-
125
- genders.append(genderfromcaption(caption))
126
-
127
- print(genders, skintones)
128
-
129
- return images, skintoneplot(skintones), genderplot(genders)
130
-
131
-
132
- with gr.Blocks(title = "Skin Tone and Gender bias in SDXL Demo - Inference API") as demo:
133
-
134
- gr.Markdown("# Skin Tone and Gender bias in SDXL Demo")
135
-
136
- prompt = gr.Textbox(label="Enter the Prompt")
137
- gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery",
138
- columns=[5], rows=[2], object_fit="contain", height="auto")
139
- btn = gr.Button("Generate images", scale=0)
140
- with gr.Row(equal_height=True):
141
- skinplot = gr.Plot(label="Skin Tone")
142
- genplot = gr.Plot(label="Gender")
143
-
144
-
145
- btn.click(generate_images_plots, inputs = prompt, outputs = [gallery, skinplot, genplot])
146
-
147
-
148
-
149
- demo.launch(debug=True)