Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
import os
|
6 |
+
import json #
|
7 |
+
|
8 |
+
##Bloom
|
9 |
+
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom-350m"
|
10 |
+
# HF_TOKEN = os.environ["HF_TOKEN"]
|
11 |
+
# headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
12 |
+
|
13 |
+
def translate(prompt_ , from_lang, to_lang, input_prompt = "translate this", seed = 42):
|
14 |
+
|
15 |
+
prompt = f"Instruction : Given an {from_lang} input sentence translate it into {to_lang} sentence. \n input : \"{prompt_}\" \n {to_lang} : "
|
16 |
+
if len(prompt) == 0:
|
17 |
+
prompt = input_prompt
|
18 |
+
|
19 |
+
json_ = {
|
20 |
+
"inputs": prompt,
|
21 |
+
"parameters": {
|
22 |
+
"top_p": 0.9,
|
23 |
+
"temperature": 1.1,
|
24 |
+
"max_new_tokens": 250,
|
25 |
+
"return_full_text": False,
|
26 |
+
"do_sample": False,
|
27 |
+
"seed": seed,
|
28 |
+
"early_stopping": False,
|
29 |
+
"length_penalty": 0.0,
|
30 |
+
"eos_token_id": None,
|
31 |
+
},
|
32 |
+
"options": {
|
33 |
+
"use_cache": True,
|
34 |
+
"wait_for_model": True,
|
35 |
+
},
|
36 |
+
}
|
37 |
+
response = requests.request("POST", API_URL, json=json_) # headers=headers
|
38 |
+
# output = response.json()
|
39 |
+
output = json.loads(response.content.decode("utf-8"))
|
40 |
+
output_tmp = output[0]['generated_text']
|
41 |
+
solution = output_tmp.split(f"\n{to_lang}:")[0]
|
42 |
+
|
43 |
+
|
44 |
+
if '\n\n' in solution:
|
45 |
+
final_solution = solution.split("\n\n")[0]
|
46 |
+
else:
|
47 |
+
final_solution = solution
|
48 |
+
return final_solution
|
49 |
+
|
50 |
+
demo = gr.Blocks()
|
51 |
+
|
52 |
+
with demo:
|
53 |
+
gr.Markdown("<h1><center>Translate with Bloom</center></h1>")
|
54 |
+
gr.Markdown('''
|
55 |
+
## Model Details
|
56 |
+
BLOOM is an autoregressive Large Language Model (LLM), trained to continue text
|
57 |
+
from a prompt on vast amounts of text data using industrial-scale computational
|
58 |
+
resources. As such, it is able to output coherent text in 46 languages and 13
|
59 |
+
programming languages that is hardly distinguishable from text written by humans.
|
60 |
+
BLOOM can also be instructed to perform text tasks it hasn't been explicitly trained
|
61 |
+
for, by casting them as text generation tasks.
|
62 |
+
|
63 |
+
## Project Details
|
64 |
+
In this project we are going to explore the translation capabitlies of "BLOOM".
|
65 |
+
|
66 |
+
## How to use
|
67 |
+
At the moment this space has only capacity to translate between English, Spanish and Hindi languages.
|
68 |
+
from languange is the languge you put in text box and to langauge is to what language you are intended to translate.
|
69 |
+
Select from language from the drop down.
|
70 |
+
Select to language from the drop down.
|
71 |
+
|
72 |
+
people are encouraged to improve this space by contributing.
|
73 |
+
|
74 |
+
this space is created by [Kishore](https://www.linkedin.com/in/kishore-kunisetty-925a3919a/) inorder to participate in [EuroPython22](https://huggingface.co/EuroPython2022)
|
75 |
+
please like the project to support my contribution to EuroPython22. 😊
|
76 |
+
''')
|
77 |
+
with gr.Row():
|
78 |
+
from_lang = gr.Dropdown(['English', 'Spanish', 'Hindi'],
|
79 |
+
value='English',
|
80 |
+
label='select From language : ')
|
81 |
+
to_lang = gr.Dropdown(['English', 'Spanish', 'Hindi'],
|
82 |
+
value='Hindi',
|
83 |
+
label= 'select to Language : ')
|
84 |
+
|
85 |
+
input_prompt = gr.Textbox(label="Enter the sentence : ",
|
86 |
+
value=f"Instruction: ... \ninput: \"from sentence\" \n{to_lang} :",
|
87 |
+
lines=6)
|
88 |
+
|
89 |
+
generated_txt = gr.Textbox(lines=3)
|
90 |
+
|
91 |
+
b1 = gr.Button("translate")
|
92 |
+
b1.click(translate,inputs=[ input_prompt, from_lang, to_lang], outputs=generated_txt)
|
93 |
+
|
94 |
+
demo.launch(enable_queue=True, debug=True)
|
95 |
+
|