Spaces:
Runtime error
Runtime error
""" | |
Module for ingesting data to be used by the RAG tool. | |
""" | |
import glob | |
import os | |
from typing import List | |
from multiprocessing import Pool | |
from tqdm import tqdm | |
from langchain_community.document_loaders import ( | |
CSVLoader, | |
PyMuPDFLoader, | |
TextLoader, | |
UnstructuredWordDocumentLoader, | |
UnstructuredPowerPointLoader, | |
UnstructuredMarkdownLoader, | |
UnstructuredEPubLoader, | |
) | |
from langchain_community.vectorstores.chroma import Chroma | |
from langchain_openai.embeddings import OpenAIEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_core.documents import Document | |
import chromadb | |
from dotenv import ( | |
load_dotenv, | |
find_dotenv, | |
) | |
from fastapi import APIRouter | |
from constants import CHROMA_SETTINGS | |
ingestion_router = APIRouter() | |
if not load_dotenv(find_dotenv()): | |
print("Could not load `.env` file or it is empty. Please check that it exists \ | |
and is readable by the current user") | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
embeddings_model = OpenAIEmbeddings() | |
# Load environment variables | |
persist_directory = os.environ.get("PERSIST_DIRECTORY", "chroma_vectorstore") | |
source_directory = os.environ.get('SOURCE_DIRECTORY', "data") | |
CHUNK_SIZE = 1000 | |
CHUNK_OVERLAP = 200 | |
LOADER_MAPPING = { | |
".csv": (CSVLoader, {}), | |
".doc": (UnstructuredWordDocumentLoader, {}), | |
".docx": (UnstructuredWordDocumentLoader, {}), | |
".epub": (UnstructuredEPubLoader, {}), | |
".md": (UnstructuredMarkdownLoader, {}), | |
".pdf": (PyMuPDFLoader, {}), | |
".ppt": (UnstructuredPowerPointLoader, {}), | |
".pptx": (UnstructuredPowerPointLoader, {}), | |
".txt": (TextLoader, {"encoding": "utf8"}), | |
# ".json": (JSONLoader, {"jq_schema": ".", "text_content": False}) | |
} | |
def load_single_document(file_path: str) -> List[Document]: | |
ext = "." + file_path.rsplit(".", 1)[-1].lower() | |
print(file_path) | |
if ext in LOADER_MAPPING: | |
loader_class, loader_args = LOADER_MAPPING[ext] | |
loader = loader_class(file_path, **loader_args) | |
return loader.load() | |
raise ValueError(f"Unsupported file extension '{ext}'") | |
def load_documents( | |
source_dir: str, | |
ignored_files: List[str] = [] | |
) -> List[Document]: | |
""" | |
Loads all documents from the source documents directory, ignoring specified files | |
""" | |
all_files = [] | |
for ext in LOADER_MAPPING: | |
all_files.extend( | |
glob.glob(os.path.join(source_dir, f"**/*{ext.lower()}"), recursive=True) | |
) | |
all_files.extend( | |
glob.glob(os.path.join(source_dir, f"**/*{ext.upper()}"), recursive=True) | |
) | |
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files] | |
with Pool(processes=os.cpu_count()) as pool: | |
results = [] | |
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar: | |
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)): | |
results.extend(docs) | |
pbar.update() | |
return results | |
def process_documents(ignored_files: List[str] = []) -> List[Document]: | |
""" | |
Load documents and split in chunks | |
""" | |
print(f"Loading documents from {source_directory}") | |
documents = load_documents(source_directory, ignored_files) | |
if not documents: | |
print("No new documents to load") | |
return None | |
print(f"Loaded {len(documents)} new documents from {source_directory}") | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=CHUNK_SIZE, | |
chunk_overlap=CHUNK_OVERLAP | |
) | |
texts = text_splitter.split_documents(documents) | |
print(f"Split into {len(texts)} chunks of text (max. {CHUNK_SIZE} tokens each)") | |
return texts | |
def does_vectorstore_exist( | |
persist_dir: str, | |
embeddings: OpenAIEmbeddings | |
) -> bool: | |
""" | |
Checks if vectorstore exists | |
""" | |
db = Chroma( | |
persist_directory=persist_dir, | |
embedding_function=embeddings, | |
client_settings=CHROMA_SETTINGS, | |
) | |
if not db.get()['documents']: | |
return False | |
return True | |
def main(): | |
try: | |
# Create embeddings | |
embeddings = OpenAIEmbeddings(api_key=OPENAI_API_KEY) | |
# Chroma client | |
chroma_client = chromadb.PersistentClient( | |
settings=CHROMA_SETTINGS, | |
path=persist_directory | |
) | |
if does_vectorstore_exist(persist_directory, embeddings): | |
# Update and store locally vectorstore | |
print(f"Appending to existing vectorstore at {persist_directory}") | |
db = Chroma( | |
persist_directory=persist_directory, | |
embedding_function=embeddings, | |
client_settings=CHROMA_SETTINGS, | |
client=chroma_client | |
) | |
collection = db.get() | |
texts = process_documents( | |
[metadata['source'] for metadata in collection['metadatas']] | |
) | |
if not texts: | |
return "No new document to load" | |
print("Creating embeddings. May take some minutes...") | |
db.add_documents(texts) | |
else: | |
# Create and store locally vectorstore | |
print("Creating new vectorstore") | |
texts = process_documents() | |
if not texts: | |
return "No new document to load" | |
print("Creating embeddings. May take some minutes...") | |
db = Chroma.from_documents( | |
texts, | |
embeddings, | |
persist_directory=persist_directory, | |
client_settings=CHROMA_SETTINGS, | |
client=chroma_client | |
) | |
db.persist() | |
db = None | |
print("Ingestion complete!") | |
return { | |
'Status': 'Ingestion complete!', | |
"responseCode": 200 | |
} | |
# If an error occurs | |
except Exception as e: | |
print(e) | |
return { | |
"Status": "An error occurred", | |
"responseCode": 201 | |
} | |