Spaces:
Sleeping
Sleeping
Commit
Β·
91b23d7
1
Parent(s):
152fbf2
Update app.py with speed optimization and debug logging
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
# app.py (
|
| 2 |
-
import io, os, json
|
| 3 |
from typing import Dict, List, Any
|
| 4 |
import gradio as gr
|
| 5 |
from fastapi import FastAPI, UploadFile
|
|
@@ -12,9 +12,7 @@ from transformers import BlipProcessor, BlipForConditionalGeneration
|
|
| 12 |
import torch
|
| 13 |
import uvicorn
|
| 14 |
|
| 15 |
-
|
| 16 |
-
import subprocess
|
| 17 |
-
|
| 18 |
try:
|
| 19 |
print("\n--- DEBUG INFO ---")
|
| 20 |
tesseract_path = shutil.which("tesseract")
|
|
@@ -29,69 +27,86 @@ try:
|
|
| 29 |
except Exception as e:
|
| 30 |
print("Error during Tesseract check:", e)
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 35 |
blip_model = BlipForConditionalGeneration.from_pretrained(
|
| 36 |
"Salesforce/blip-image-captioning-base",
|
| 37 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 38 |
).eval()
|
|
|
|
| 39 |
|
| 40 |
def _caption_image(img: Image.Image) -> str:
|
| 41 |
"""Run BLIP to caption a PIL image."""
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def analyze_slidepack(file: Any) -> Dict[str, Any]:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
for
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
if text:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
"textBlocks": texts,
|
| 69 |
-
"imageCaptions": caps
|
| 70 |
-
})
|
| 71 |
-
|
| 72 |
-
# ---------- PDF ----------
|
| 73 |
-
elif fname.lower().endswith(".pdf"):
|
| 74 |
-
with pdfplumber.open(file.name) as pdf:
|
| 75 |
-
for idx, page in enumerate(pdf.pages, start=1):
|
| 76 |
-
texts = [page.extract_text() or ""]
|
| 77 |
-
caps = []
|
| 78 |
-
img = page.to_image(resolution=200).original
|
| 79 |
-
caps.append(_caption_image(img))
|
| 80 |
-
ocr_text = pytesseract.image_to_string(img)
|
| 81 |
-
if ocr_text.strip():
|
| 82 |
-
texts.append(ocr_text)
|
| 83 |
slides_out.append({
|
| 84 |
"slide_index": idx,
|
| 85 |
-
"textBlocks":
|
| 86 |
"imageCaptions": caps
|
| 87 |
})
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
demo = gr.Interface(
|
| 96 |
fn=analyze_slidepack,
|
| 97 |
inputs=gr.File(label="Upload PPTX or PDF"),
|
|
@@ -100,10 +115,11 @@ demo = gr.Interface(
|
|
| 100 |
description=(
|
| 101 |
"Returns **every** text fragment and BLIP-generated image caption in JSON. "
|
| 102 |
"No summarisation β perfect for downstream quiz agents."
|
| 103 |
-
)
|
|
|
|
| 104 |
)
|
| 105 |
|
| 106 |
-
#
|
| 107 |
api = FastAPI()
|
| 108 |
api.add_middleware(
|
| 109 |
CORSMiddleware,
|
|
@@ -115,18 +131,24 @@ api.add_middleware(
|
|
| 115 |
|
| 116 |
@api.post("/extract_slidepack")
|
| 117 |
async def extract_slidepack(file: UploadFile):
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
if __name__ == "__main__":
|
| 124 |
import asyncio
|
| 125 |
|
| 126 |
async def delayed_startup():
|
| 127 |
print("β³ Waiting before MCP launch to avoid race condition...")
|
| 128 |
-
await asyncio.sleep(3)
|
| 129 |
print("π Launching with MCP support now.")
|
| 130 |
demo.launch(mcp_server=True)
|
| 131 |
|
| 132 |
-
asyncio.run(delayed_startup())
|
|
|
|
| 1 |
+
# app.py (with logging and debug improvements)
|
| 2 |
+
import io, os, json, shutil, subprocess, traceback
|
| 3 |
from typing import Dict, List, Any
|
| 4 |
import gradio as gr
|
| 5 |
from fastapi import FastAPI, UploadFile
|
|
|
|
| 12 |
import torch
|
| 13 |
import uvicorn
|
| 14 |
|
| 15 |
+
# ----------- Tesseract Debugging -----------
|
|
|
|
|
|
|
| 16 |
try:
|
| 17 |
print("\n--- DEBUG INFO ---")
|
| 18 |
tesseract_path = shutil.which("tesseract")
|
|
|
|
| 27 |
except Exception as e:
|
| 28 |
print("Error during Tesseract check:", e)
|
| 29 |
|
| 30 |
+
# ----------- BLIP Image Caption Model -----------
|
| 31 |
+
print("π Loading BLIP model...")
|
| 32 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 33 |
blip_model = BlipForConditionalGeneration.from_pretrained(
|
| 34 |
"Salesforce/blip-image-captioning-base",
|
| 35 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 36 |
).eval()
|
| 37 |
+
print("β
BLIP model loaded")
|
| 38 |
|
| 39 |
def _caption_image(img: Image.Image) -> str:
|
| 40 |
"""Run BLIP to caption a PIL image."""
|
| 41 |
+
try:
|
| 42 |
+
inputs = processor(img.convert("RGB"), return_tensors="pt")
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
out = blip_model.generate(**{k: v.to(blip_model.device) for k, v in inputs.items()})
|
| 45 |
+
return processor.decode(out[0], skip_special_tokens=True)
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"[ERROR] Captioning image failed: {e}")
|
| 48 |
+
traceback.print_exc()
|
| 49 |
+
return "[CAPTION_ERROR]"
|
| 50 |
+
|
| 51 |
+
# ----------- Slidepack Processing -----------
|
| 52 |
def analyze_slidepack(file: Any) -> Dict[str, Any]:
|
| 53 |
+
try:
|
| 54 |
+
fname = os.path.basename(file.name)
|
| 55 |
+
print(f"π Analyzing file: {fname}")
|
| 56 |
+
slides_out: List[Dict[str, Any]] = []
|
| 57 |
+
|
| 58 |
+
# PPTX
|
| 59 |
+
if fname.lower().endswith(".pptx"):
|
| 60 |
+
pres = Presentation(file.name)
|
| 61 |
+
for idx, slide in enumerate(pres.slides, start=1):
|
| 62 |
+
texts, caps = [], []
|
| 63 |
+
for shape in slide.shapes:
|
| 64 |
+
if hasattr(shape, "text"):
|
| 65 |
+
text = shape.text.strip()
|
| 66 |
+
if text:
|
| 67 |
+
texts.append(text)
|
| 68 |
+
if shape.shape_type == 13:
|
| 69 |
+
img_blob = shape.image.blob
|
| 70 |
+
img = Image.open(io.BytesIO(img_blob))
|
| 71 |
+
caps.append(_caption_image(img))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
slides_out.append({
|
| 73 |
"slide_index": idx,
|
| 74 |
+
"textBlocks": texts,
|
| 75 |
"imageCaptions": caps
|
| 76 |
})
|
| 77 |
|
| 78 |
+
# PDF
|
| 79 |
+
elif fname.lower().endswith(".pdf"):
|
| 80 |
+
with pdfplumber.open(file.name) as pdf:
|
| 81 |
+
for idx, page in enumerate(pdf.pages, start=1):
|
| 82 |
+
texts = [page.extract_text() or ""]
|
| 83 |
+
caps = []
|
| 84 |
+
try:
|
| 85 |
+
img = page.to_image(resolution=200).original
|
| 86 |
+
caps.append(_caption_image(img))
|
| 87 |
+
ocr_text = pytesseract.image_to_string(img)
|
| 88 |
+
if ocr_text.strip():
|
| 89 |
+
texts.append(ocr_text)
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f"[WARN] Skipping image/OCR on page {idx} due to error: {e}")
|
| 92 |
+
slides_out.append({
|
| 93 |
+
"slide_index": idx,
|
| 94 |
+
"textBlocks": [t for t in texts if t.strip()],
|
| 95 |
+
"imageCaptions": caps
|
| 96 |
+
})
|
| 97 |
+
|
| 98 |
+
else:
|
| 99 |
+
raise gr.Error("Unsupported file type. Upload a .pptx or .pdf.")
|
| 100 |
+
|
| 101 |
+
print("β
Slidepack analysis completed")
|
| 102 |
+
return {"file_name": fname, "slides": slides_out}
|
| 103 |
+
|
| 104 |
+
except Exception as e:
|
| 105 |
+
print(f"[ERROR] Exception during slidepack analysis: {e}")
|
| 106 |
+
traceback.print_exc()
|
| 107 |
+
return {"error": str(e)}
|
| 108 |
+
|
| 109 |
+
# ----------- Gradio UI -----------
|
| 110 |
demo = gr.Interface(
|
| 111 |
fn=analyze_slidepack,
|
| 112 |
inputs=gr.File(label="Upload PPTX or PDF"),
|
|
|
|
| 115 |
description=(
|
| 116 |
"Returns **every** text fragment and BLIP-generated image caption in JSON. "
|
| 117 |
"No summarisation β perfect for downstream quiz agents."
|
| 118 |
+
),
|
| 119 |
+
live=True
|
| 120 |
)
|
| 121 |
|
| 122 |
+
# ----------- FastAPI REST Endpoint -----------
|
| 123 |
api = FastAPI()
|
| 124 |
api.add_middleware(
|
| 125 |
CORSMiddleware,
|
|
|
|
| 131 |
|
| 132 |
@api.post("/extract_slidepack")
|
| 133 |
async def extract_slidepack(file: UploadFile):
|
| 134 |
+
try:
|
| 135 |
+
path = f"/tmp/{file.filename}"
|
| 136 |
+
with open(path, "wb") as f:
|
| 137 |
+
f.write(await file.read())
|
| 138 |
+
return analyze_slidepack(type("File", (object,), {"name": path}))
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(f"[ERROR] extract_slidepack endpoint failed: {e}")
|
| 141 |
+
traceback.print_exc()
|
| 142 |
+
return {"error": str(e)}
|
| 143 |
+
|
| 144 |
+
# ----------- Main Entry -----------
|
| 145 |
if __name__ == "__main__":
|
| 146 |
import asyncio
|
| 147 |
|
| 148 |
async def delayed_startup():
|
| 149 |
print("β³ Waiting before MCP launch to avoid race condition...")
|
| 150 |
+
await asyncio.sleep(3)
|
| 151 |
print("π Launching with MCP support now.")
|
| 152 |
demo.launch(mcp_server=True)
|
| 153 |
|
| 154 |
+
asyncio.run(delayed_startup())
|