|
import argparse |
|
import logging |
|
import os |
|
from pathlib import Path |
|
from typing import Any, Dict |
|
import sys |
|
import pytorch_lightning as pl |
|
from pytorch_lightning.utilities import rank_zero_info |
|
from pytorch_lightning.callbacks import LearningRateMonitor |
|
|
|
from transformers import ( |
|
AdamW, |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForPreTraining, |
|
AutoModelForQuestionAnswering, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForSequenceClassification, |
|
AutoModelForTokenClassification, |
|
AutoModelWithLMHead, |
|
AutoTokenizer, |
|
PretrainedConfig, |
|
PreTrainedTokenizer, |
|
) |
|
from transformers.optimization import ( |
|
Adafactor, |
|
get_cosine_schedule_with_warmup, |
|
get_cosine_with_hard_restarts_schedule_with_warmup, |
|
get_linear_schedule_with_warmup, |
|
get_polynomial_decay_schedule_with_warmup, |
|
) |
|
|
|
from tokenizers import AddedToken |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
MODEL_MODES = { |
|
"base": AutoModel, |
|
"sequence-classification": AutoModelForSequenceClassification, |
|
"question-answering": AutoModelForQuestionAnswering, |
|
"pretraining": AutoModelForPreTraining, |
|
"token-classification": AutoModelForTokenClassification, |
|
"language-modeling": AutoModelWithLMHead, |
|
"summarization": AutoModelForSeq2SeqLM, |
|
"translation": AutoModelForSeq2SeqLM, |
|
"graph2text": AutoModelForSeq2SeqLM, |
|
} |
|
|
|
|
|
|
|
arg_to_scheduler = { |
|
"linear": get_linear_schedule_with_warmup, |
|
"cosine": get_cosine_schedule_with_warmup, |
|
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, |
|
"polynomial": get_polynomial_decay_schedule_with_warmup, |
|
|
|
|
|
} |
|
arg_to_scheduler_choices = sorted(arg_to_scheduler.keys()) |
|
arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}" |
|
|
|
|
|
class BaseTransformer(pl.LightningModule): |
|
def __init__( |
|
self, |
|
hparams: argparse.Namespace, |
|
num_labels=None, |
|
mode="base", |
|
config=None, |
|
tokenizer=None, |
|
model=None, |
|
**config_kwargs |
|
): |
|
"""Initialize a model, tokenizer and config.""" |
|
super().__init__() |
|
|
|
|
|
|
|
self.save_hyperparameters(hparams) |
|
self.step_count = -2 |
|
self.output_dir = Path(self.hparams.output_dir) |
|
cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None |
|
if config is None: |
|
self.config = AutoConfig.from_pretrained( |
|
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, |
|
**({"num_labels": num_labels} if num_labels is not None else {}), |
|
cache_dir=cache_dir, |
|
**config_kwargs, |
|
) |
|
else: |
|
self.config: PretrainedConfig = config |
|
|
|
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") |
|
for p in extra_model_params: |
|
if getattr(self.hparams, p, None): |
|
assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute" |
|
setattr(self.config, p, getattr(self.hparams, p)) |
|
|
|
if tokenizer is None: |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, |
|
cache_dir=cache_dir, |
|
) |
|
new_tokens = [ |
|
'<H>','<R>','<T>' |
|
] |
|
new_tokens_vocab = {} |
|
new_tokens_vocab['additional_special_tokens'] = [] |
|
for idx, t in enumerate(new_tokens): |
|
new_tokens_vocab['additional_special_tokens'].append(t) |
|
num_added_toks = self.tokenizer.add_special_tokens(new_tokens_vocab) |
|
rank_zero_info('We have added %s tokens', num_added_toks) |
|
else: |
|
self.tokenizer: PreTrainedTokenizer = tokenizer |
|
self.model_type = MODEL_MODES[mode] |
|
if model is None: |
|
self.model = self.model_type.from_pretrained( |
|
self.hparams.model_name_or_path, |
|
from_tf=bool(".ckpt" in self.hparams.model_name_or_path), |
|
config=self.config, |
|
cache_dir=cache_dir, |
|
) |
|
self.model.resize_token_embeddings(len(self.tokenizer)) |
|
else: |
|
self.model = model |
|
|
|
def load_hf_checkpoint(self, *args, **kwargs): |
|
self.model = self.model_type.from_pretrained(*args, **kwargs) |
|
|
|
def get_lr_scheduler(self): |
|
get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler] |
|
scheduler = get_schedule_func( |
|
self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps |
|
) |
|
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1} |
|
return scheduler |
|
|
|
def configure_optimizers(self): |
|
"""Prepare optimizer and schedule (linear warmup and decay)""" |
|
model = self.model |
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": self.hparams.weight_decay, |
|
}, |
|
{ |
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
if self.hparams.adafactor: |
|
optimizer = Adafactor( |
|
optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False |
|
) |
|
|
|
else: |
|
optimizer = AdamW( |
|
optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon |
|
) |
|
self.opt = optimizer |
|
|
|
scheduler = self.get_lr_scheduler() |
|
|
|
return [optimizer], [scheduler] |
|
|
|
|
|
def test_step(self, batch, batch_nb): |
|
return self.validation_step(batch, batch_nb) |
|
|
|
def test_epoch_end(self, outputs): |
|
return self.validation_end(outputs) |
|
|
|
@property |
|
def total_steps(self) -> int: |
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The number of total training steps that will be run. Used for lr scheduler purposes.""" |
|
num_devices = max(1, self.hparams.gpus) |
|
effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices |
|
dataset_size = len(self.train_loader.dataset) |
|
return (dataset_size / effective_batch_size) * self.hparams.max_epochs |
|
|
|
def setup(self, mode): |
|
|
|
self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True) |
|
|
|
def get_dataloader(self, type_path, batch_size, shuffle=False): |
|
raise NotImplementedError("You must implement this for your task") |
|
|
|
def train_dataloader(self): |
|
return self.train_loader |
|
|
|
def val_dataloader(self): |
|
return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False) |
|
|
|
def test_dataloader(self): |
|
return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False) |
|
|
|
def _feature_file(self, mode): |
|
return os.path.join( |
|
self.hparams.data_dir, |
|
"cached_{}_{}_{}".format( |
|
mode, |
|
list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(), |
|
str(self.hparams.max_seq_length), |
|
), |
|
) |
|
|
|
def get_progress_bar_dict(self): |
|
|
|
|
|
lrs = self.trainer.lr_logger.lrs['lr-AdamW/pg1'][-1] |
|
running_train_loss = self.trainer.running_loss.mean() |
|
avg_training_loss = running_train_loss.cpu().item() if running_train_loss is not None else float('NaN') |
|
tqdm_dict = {"loss": "{:.3f}".format(avg_training_loss), "lr": lrs} |
|
return tqdm_dict |
|
|
|
@pl.utilities.rank_zero_only |
|
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: |
|
save_path = self.output_dir.joinpath("best_tfmr") |
|
self.model.config.save_step = self.step_count |
|
self.model.save_pretrained(save_path) |
|
self.tokenizer.save_pretrained(save_path) |
|
|
|
@staticmethod |
|
def add_model_specific_args(parser, root_dir): |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models", |
|
) |
|
parser.add_argument( |
|
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
default=None, |
|
type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
default="", |
|
type=str, |
|
help="Where do you want to store the pre-trained models downloaded from s3", |
|
) |
|
parser.add_argument( |
|
"--encoder_layerdrop", |
|
type=float, |
|
help="Encoder layer dropout probability (Optional). Goes into model.config", |
|
) |
|
parser.add_argument( |
|
"--decoder_layerdrop", |
|
type=float, |
|
help="Decoder layer dropout probability (Optional). Goes into model.config", |
|
) |
|
parser.add_argument( |
|
"--dropout", |
|
type=float, |
|
help="Dropout probability (Optional). Goes into model.config", |
|
) |
|
parser.add_argument( |
|
"--attention_dropout", |
|
type=float, |
|
help="Attention dropout probability (Optional). Goes into model.config", |
|
) |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
default="linear", |
|
choices=arg_to_scheduler_choices, |
|
metavar=arg_to_scheduler_metavar, |
|
type=str, |
|
help="Learning rate scheduler", |
|
) |
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") |
|
parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader") |
|
parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int) |
|
parser.add_argument("--train_batch_size", default=32, type=int) |
|
parser.add_argument("--eval_batch_size", default=32, type=int) |
|
parser.add_argument("--adafactor", action="store_true") |
|
|
|
|
|
class LoggingCallback(pl.Callback): |
|
def on_batch_end(self, trainer, pl_module): |
|
lr_scheduler = trainer.lr_schedulers[0]["scheduler"] |
|
lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} |
|
pl_module.logger.log_metrics(lrs) |
|
|
|
def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): |
|
rank_zero_info("***** Validation results *****") |
|
metrics = trainer.callback_metrics |
|
rank_zero_info(trainer.logger) |
|
|
|
for key in sorted(metrics): |
|
if key not in ["log", "progress_bar"]: |
|
rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) |
|
|
|
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): |
|
rank_zero_info("***** Test results *****") |
|
metrics = trainer.callback_metrics |
|
|
|
output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt") |
|
with open(output_test_results_file, "w") as writer: |
|
for key in sorted(metrics): |
|
if key not in ["log", "progress_bar"]: |
|
rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) |
|
writer.write("{} = {}\n".format(key, str(metrics[key]))) |
|
|
|
|
|
def add_generic_args(parser, root_dir) -> None: |
|
|
|
parser.add_argument( |
|
"--output_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--fp16", |
|
action="store_true", |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", |
|
) |
|
|
|
parser.add_argument( |
|
"--fp16_opt_level", |
|
type=str, |
|
default="O2", |
|
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html", |
|
) |
|
parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int) |
|
parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm") |
|
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") |
|
parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
dest="accumulate_grad_batches", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") |
|
parser.add_argument( |
|
"--data_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", |
|
) |
|
|
|
|
|
def generic_train( |
|
model: BaseTransformer, |
|
args: argparse.Namespace, |
|
early_stopping_callback=False, |
|
logger=True, |
|
extra_callbacks=[], |
|
checkpoint_callback=None, |
|
logging_callback=None, |
|
**extra_train_kwargs |
|
): |
|
pl.seed_everything(args.seed) |
|
|
|
|
|
odir = Path(model.hparams.output_dir) |
|
odir.mkdir(exist_ok=True) |
|
|
|
|
|
if checkpoint_callback is None: |
|
checkpoint_callback = pl.callbacks.ModelCheckpoint( |
|
filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1 |
|
) |
|
if logging_callback is None: |
|
logging_callback = LoggingCallback() |
|
|
|
train_params = {} |
|
|
|
|
|
if args.fp16: |
|
train_params["precision"] = 16 |
|
train_params["amp_level"] = args.fp16_opt_level |
|
|
|
if args.gpus > 1: |
|
train_params["distributed_backend"] = "ddp" |
|
|
|
train_params["accumulate_grad_batches"] = args.accumulate_grad_batches |
|
|
|
lr_logger = LearningRateMonitor(logging_interval='step') |
|
|
|
|
|
trainer = pl.Trainer.from_argparse_args( |
|
args, |
|
weights_summary='full', |
|
callbacks=[logging_callback, lr_logger], |
|
logger=logger, |
|
checkpoint_callback=checkpoint_callback, |
|
early_stop_callback=early_stopping_callback, |
|
num_sanity_val_steps=4, |
|
**train_params, |
|
) |
|
|
|
trainer.lr_logger = lr_logger |
|
|
|
if args.do_train: |
|
trainer.fit(model) |
|
|
|
return trainer |
|
|