TableDetAndRec / app.py
Joker1212's picture
fix import bug
8743751 verified
raw
history blame
7.29 kB
import threading
import time
import cv2
import gradio as gr
from lineless_table_rec import LinelessTableRecognition
from paddleocr import PPStructure
from rapid_table import RapidTable
from rapidocr_onnxruntime import RapidOCR
from table_cls import TableCls
from wired_table_rec import WiredTableRecognition
from utils import plot_rec_box, LoadImage, format_html, box_4_2_poly_to_box_4_1
img_loader = LoadImage()
table_rec_path = "models/table_rec/ch_ppstructure_mobile_v2_SLANet.onnx"
det_model_dir = {
"mobile_det": "models/ocr/ch_PP-OCRv4_det_infer.onnx",
}
rec_model_dir = {
"mobile_rec": "models/ocr/ch_PP-OCRv4_rec_infer.onnx",
}
table_engine_list = [
"auto",
"RapidTable(SLANet)",
"RapidTable(SLANet-plus)",
"wired_table_v2",
"pp_table",
"wired_table_v1",
"lineless_table"
]
# 示例图片路径
example_images = [
"images/wired1.png",
"images/wired2.png",
"images/wired3.png",
"images/lineless1.png",
"images/wired4.jpg",
"images/lineless2.png",
"images/wired5.jpg",
"images/lineless3.jpg",
"images/wired6.jpg",
]
rapid_table_engine = RapidTable(model_path=table_rec_path)
SLANet_plus_table_Engine = RapidTable()
wired_table_engine_v1 = WiredTableRecognition(version="v1")
wired_table_engine_v2 = WiredTableRecognition(version="v2")
lineless_table_engine = LinelessTableRecognition()
table_cls = TableCls()
ocr_engine_dict = {}
pp_engine_dict = {}
for det_model in det_model_dir.keys():
for rec_model in rec_model_dir.keys():
det_model_path = det_model_dir[det_model]
rec_model_path = rec_model_dir[rec_model]
key = f"{det_model}_{rec_model}"
ocr_engine_dict[key] = RapidOCR(det_model_path=det_model_path, rec_model_path=rec_model_path)
pp_engine_dict[key] = PPStructure(
layout=False,
show_log=False,
table=True,
use_onnx=True,
table_model_dir=table_rec_path,
det_model_dir=det_model_path,
rec_model_dir=rec_model_path
)
def select_ocr_model(det_model, rec_model):
return ocr_engine_dict[f"{det_model}_{rec_model}"]
def select_table_model(img, table_engine_type, det_model, rec_model):
if table_engine_type == "RapidTable(SLANet)":
return rapid_table_engine, table_engine_type
elif table_engine_type == "RapidTable(SLANet-plus)":
return SLANet_plus_table_Engine, table_engine_type
elif table_engine_type == "wired_table_v1":
return wired_table_engine_v1, table_engine_type
elif table_engine_type == "wired_table_v2":
print("使用v2 wired table")
return wired_table_engine_v2, table_engine_type
elif table_engine_type == "lineless_table":
return lineless_table_engine, table_engine_type
elif table_engine_type == "pp_table":
return pp_engine_dict[f"{det_model}_{rec_model}"], 0
elif table_engine_type == "auto":
cls, elasp = table_cls(img)
if cls == 'wired':
table_engine = wired_table_engine_v2
return table_engine, "wired_table_v2"
return lineless_table_engine, "lineless_table"
def process_image(img, table_engine_type, det_model, rec_model):
img = img_loader(img)
start = time.time()
table_engine, talbe_type = select_table_model(img, table_engine_type, det_model, rec_model)
ocr_engine = select_ocr_model(det_model, rec_model)
if isinstance(table_engine, PPStructure):
result = table_engine(img, return_ocr_result_in_table=True)
html = result[0]['res']['html']
polygons = result[0]['res']['cell_bbox']
polygons = [[polygon[0], polygon[1], polygon[4], polygon[5]] for polygon in polygons]
ocr_boxes = result[0]['res']['boxes']
all_elapse = f"- `table all cost: {time.time() - start:.5f}`"
else:
ocr_res, ocr_infer_elapse = ocr_engine(img)
det_cost, cls_cost, rec_cost = ocr_infer_elapse
ocr_boxes = [box_4_2_poly_to_box_4_1(ori_ocr[0]) for ori_ocr in ocr_res]
if isinstance(table_engine, RapidTable):
html, polygons, table_rec_elapse = table_engine(img, ocr_result=ocr_res)
polygons = [[polygon[0], polygon[1], polygon[4], polygon[5]] for polygon in polygons]
elif isinstance(table_engine, (WiredTableRecognition, LinelessTableRecognition)):
html, table_rec_elapse, polygons, _, _ = table_engine(img, ocr_result=ocr_res)
sum_elapse = time.time() - start
all_elapse = f"- table_type: {talbe_type}\n table all cost: {sum_elapse:.5f}\n - table rec cost: {table_rec_elapse:.5f}\n - ocr cost: {det_cost + cls_cost + rec_cost:.5f}"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
table_boxes_img = plot_rec_box(img.copy(), polygons)
ocr_boxes_img = plot_rec_box(img.copy(), ocr_boxes)
complete_html = format_html(html)
return complete_html, table_boxes_img, ocr_boxes_img, all_elapse
def main():
det_models_labels = list(det_model_dir.keys())
rec_models_labels = list(rec_model_dir.keys())
with gr.Blocks(css="""
.scrollable-container {
overflow-x: auto;
white-space: nowrap;
}
""") as demo:
with gr.Row(): # 两列布局
with gr.Tab("Options"):
with gr.Column(variant="panel", scale=1): # 侧边栏,宽度比例为1
img_input = gr.Image(label="Upload or Select Image", sources="upload", value="images/lineless3.jpg")
# 示例图片选择器
examples = gr.Examples(
examples=example_images,
inputs=img_input,
fn=lambda x: x, # 简单返回图片路径
outputs=img_input,
cache_examples=True
)
table_engine_type = gr.Dropdown(table_engine_list, label="Select Recognition Table Engine",
value=table_engine_list[0])
det_model = gr.Dropdown(det_models_labels, label="Select OCR Detection Model",
value=det_models_labels[0])
rec_model = gr.Dropdown(rec_models_labels, label="Select OCR Recognition Model",
value=rec_models_labels[0])
run_button = gr.Button("Run")
gr.Markdown("# Elapsed Time")
elapse_text = gr.Text(label="") # 使用 `gr.Text` 组件展示字符串
with gr.Column(scale=2): # 右边列
# 使用 Markdown 标题分隔各个组件
gr.Markdown("# Html Render")
html_output = gr.HTML(label="", elem_classes="scrollable-container")
gr.Markdown("# Table Boxes")
table_boxes_output = gr.Image(label="")
gr.Markdown("# OCR Boxes")
ocr_boxes_output = gr.Image(label="")
run_button.click(
fn=process_image,
inputs=[img_input, table_engine_type, det_model, rec_model],
outputs=[html_output, table_boxes_output, ocr_boxes_output, elapse_text]
)
demo.launch()
if __name__ == '__main__':
main()