Spaces:
Running
Running
import gradio as gr | |
import os | |
import cv2 | |
from rapid_table_det.inference import TableDetector | |
from rapid_table_det.utils.visuallize import img_loader, visuallize, extract_table_img | |
example_images = [ | |
"images/doc1.png", | |
"images/doc2.jpg", | |
"images/doc3.jpg", | |
"images/doc4.jpg", | |
"images/doc5.jpg", | |
"images/real1.jpg", | |
"images/real2.jpeg", | |
"images/real3.jpg", | |
"images/real4.jpg", | |
"images/real5.jpg" | |
] | |
# 定义模型类型选项 | |
model_type_options = { | |
"YOLO 目标检测": ["yolo_obj_det"], | |
"Paddle 目标检测": ["paddle_obj_det"], | |
"Paddle 目标检测 (量化)": ["paddle_obj_det_s"], | |
"YOLO 语义分割": ["yolo_edge_det"], | |
"YOLO 语义分割 (小型)": ["yolo_edge_det_s"], | |
"Paddle 语义分割": ["paddle_edge_det"], | |
"Paddle 语义分割 (量化)": ["paddle_edge_det_s"], | |
"Paddle 方向分类": ["paddle_cls_det"] | |
} | |
# 预生成所有可能的 TableDetector 实例 | |
preinitialized_detectors = {} | |
for obj_model_type in model_type_options["YOLO 目标检测"] + model_type_options["Paddle 目标检测"] + model_type_options[ | |
"Paddle 目标检测 (量化)"]: | |
for edge_model_type in model_type_options["YOLO 语义分割"] + model_type_options["YOLO 语义分割 (小型)"] + model_type_options[ | |
"Paddle 语义分割"] + model_type_options["Paddle 语义分割 (量化)"]: | |
for cls_model_type in model_type_options["Paddle 方向分类"]: | |
detector_key = (obj_model_type, edge_model_type, cls_model_type) | |
preinitialized_detectors[detector_key] = TableDetector( | |
obj_model_type=obj_model_type, | |
edge_model_type=edge_model_type, | |
cls_model_type=cls_model_type, | |
obj_model_path=os.path.join("models", f"{obj_model_type}.onnx"), | |
edge_model_path=os.path.join("models", f"{edge_model_type}.onnx"), | |
cls_model_path=os.path.join("models", f"{cls_model_type}.onnx") | |
) | |
# 定义图片缩放函数 | |
def resize_image(image, max_size=640): | |
height, width = image.shape[:2] | |
if max(height, width) > max_size: | |
scale = max_size / max(height, width) | |
new_height = int(height * scale) | |
new_width = int(width * scale) | |
image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) | |
return image | |
# 定义推理函数 | |
def run_inference(img_path, obj_model_type, edge_model_type, cls_model_type, det_accuracy, use_obj_det, use_edge_det, | |
use_cls_det): | |
detector_key = (obj_model_type, edge_model_type, cls_model_type) | |
table_det = preinitialized_detectors[detector_key] | |
result, elapse = table_det( | |
img_path, | |
det_accuracy=det_accuracy, | |
use_obj_det=use_obj_det, | |
use_edge_det=use_edge_det, | |
use_cls_det=use_cls_det | |
) | |
# 加载图片 | |
img = img_loader(img_path) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
extract_img = img.copy() | |
visual_img = img.copy() | |
extract_imgs = [] | |
for i, res in enumerate(result): | |
box = res["box"] | |
lt, rt, rb, lb = res["lt"], res["rt"], res["rb"], res["lb"] | |
# 带识别框和左上角方向位置 | |
visual_img = visuallize(visual_img, box, lt, rt, rb, lb) | |
# 透视变换提取表格图片 | |
wrapped_img = extract_table_img(extract_img.copy(), lt, rt, rb, lb) | |
extract_imgs.append(wrapped_img) | |
# 缩放图片 | |
visual_img = resize_image(visual_img) | |
extract_imgs = [resize_image(img) for img in extract_imgs] | |
obj_det_elapse, edge_elapse, rotate_det_elapse = elapse | |
return visual_img, extract_imgs, f"obj_det_elapse:{obj_det_elapse}, edge_elapse={edge_elapse}, rotate_det_elapse={rotate_det_elapse}" | |
def update_extract_outputs(visual_img, extract_imgs, time_info): | |
if len(extract_imgs) == 1: | |
return visual_img, extract_imgs[0], time_info | |
else: | |
return visual_img, extract_imgs, time_info | |
# 创建Gradio界面 | |
with gr.Blocks( | |
css=""" | |
.scrollable-container { | |
overflow-x: auto; | |
white-space: nowrap; | |
} | |
.header-links { | |
text-align: center; | |
} | |
.header-links a { | |
display: inline-block; | |
text-align: center; | |
margin-right: 10px; /* 调整间距 */ | |
} | |
""" | |
) as demo: | |
gr.HTML( | |
"<h1 style='text-align: center;'><a href='https://github.com/RapidAI/RapidTableDetection'>RapidTableDetection</a></h1>" | |
) | |
gr.HTML(''' | |
<div class="header-links"> | |
<a href=""><img src="https://img.shields.io/badge/Python->=3.8,<3.12-aff.svg"></a> | |
<a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Mac%2C%20Win-pink.svg"></a> | |
<a href="https://semver.org/"><img alt="SemVer2.0" src="https://img.shields.io/badge/SemVer-2.0-brightgreen"></a> | |
<a href="https://github.com/psf/black"><img src="https://img.shields.io/badge/code%20style-black-000000.svg"></a> | |
<a href="https://github.com/RapidAI/TableStructureRec/blob/c41bbd23898cb27a957ed962b0ffee3c74dfeff1/LICENSE"><img alt="GitHub" src="https://img.shields.io/badge/license-Apache 2.0-blue"></a> | |
</div> | |
''') | |
with gr.Row(): | |
with gr.Column(variant="panel", scale=1): | |
img_input = gr.Image(label="Upload or Select Image", sources="upload", value="images/real1.jpg") | |
# 示例图片选择器 | |
examples = gr.Examples( | |
examples=example_images, | |
examples_per_page=len(example_images), | |
inputs=img_input, | |
fn=lambda x: x, # 简单返回图片路径 | |
outputs=img_input, | |
cache_examples=False | |
) | |
obj_model_type = gr.Dropdown( | |
choices=model_type_options["YOLO 目标检测"] + model_type_options["Paddle 目标检测"] + | |
model_type_options["Paddle 目标检测 (量化)"], | |
value="yolo_obj_det", | |
label="obj det model") | |
edge_model_type = gr.Dropdown( | |
choices=model_type_options["YOLO 语义分割"] + model_type_options["YOLO 语义分割 (小型)"] + | |
model_type_options["Paddle 语义分割"] + model_type_options["Paddle 语义分割 (量化)"], | |
value="yolo_edge_det", | |
label="edge seg model") | |
cls_model_type = gr.Dropdown(choices=model_type_options["Paddle 方向分类"], | |
value="paddle_cls_det", | |
label="direction cls model") | |
det_accuracy = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="目标检测置信度阈值") | |
use_obj_det = gr.Checkbox(value=True, label="use obj det") | |
use_edge_det = gr.Checkbox(value=True, label="use edge seg") | |
use_cls_det = gr.Checkbox(value=True, label="use direction cls") | |
run_button = gr.Button("run") | |
with gr.Column(scale=2): | |
visual_output = gr.Image(label="output visualize") | |
extract_outputs = gr.Gallery(label="extracted images", object_fit="contain", columns=1, preview=True) | |
time_output = gr.Textbox(label="elapsed") | |
run_button.click( | |
fn=run_inference, | |
inputs=[img_input, obj_model_type, edge_model_type, cls_model_type, det_accuracy, use_obj_det, use_edge_det, | |
use_cls_det], | |
outputs=[visual_output, extract_outputs, time_output] | |
) | |
# 启动Gradio应用 | |
demo.launch() | |