Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
import time | |
import numpy as np | |
from torch.nn import functional as F | |
import os | |
from .base_model import BaseLLMModel | |
from threading import Thread | |
STABLELM_MODEL = None | |
STABLELM_TOKENIZER = None | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [50278, 50279, 50277, 1, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
class StableLM_Client(BaseLLMModel): | |
def __init__(self, model_name, user_name="") -> None: | |
super().__init__(model_name=model_name, user=user_name) | |
global STABLELM_MODEL, STABLELM_TOKENIZER | |
print(f"Starting to load StableLM to memory") | |
if model_name == "StableLM": | |
model_name = "stabilityai/stablelm-tuned-alpha-7b" | |
else: | |
model_name = f"models/{model_name}" | |
if STABLELM_MODEL is None: | |
STABLELM_MODEL = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=torch.float16).cuda() | |
if STABLELM_TOKENIZER is None: | |
STABLELM_TOKENIZER = AutoTokenizer.from_pretrained(model_name) | |
self.generator = pipeline( | |
'text-generation', model=STABLELM_MODEL, tokenizer=STABLELM_TOKENIZER, device=0) | |
print(f"Sucessfully loaded StableLM to the memory") | |
self.system_prompt = """StableAssistant | |
- StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI. | |
- StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. | |
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes. | |
- StableAssistant will refuse to participate in anything that could harm a human.""" | |
self.max_generation_token = 1024 | |
self.top_p = 0.95 | |
self.temperature = 1.0 | |
def _get_stablelm_style_input(self): | |
history = self.history + [{"role": "assistant", "content": ""}] | |
print(history) | |
messages = self.system_prompt + \ | |
"".join(["".join(["<|USER|>"+history[i]["content"], "<|ASSISTANT|>"+history[i + 1]["content"]]) | |
for i in range(0, len(history), 2)]) | |
return messages | |
def _generate(self, text, bad_text=None): | |
stop = StopOnTokens() | |
result = self.generator(text, max_new_tokens=self.max_generation_token, num_return_sequences=1, num_beams=1, do_sample=True, | |
temperature=self.temperature, top_p=self.top_p, top_k=1000, stopping_criteria=StoppingCriteriaList([stop])) | |
return result[0]["generated_text"].replace(text, "") | |
def get_answer_at_once(self): | |
messages = self._get_stablelm_style_input() | |
return self._generate(messages), len(messages) | |
def get_answer_stream_iter(self): | |
stop = StopOnTokens() | |
messages = self._get_stablelm_style_input() | |
# model_inputs = tok([messages], return_tensors="pt")['input_ids'].cuda()[:, :4096-1024] | |
model_inputs = STABLELM_TOKENIZER( | |
[messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer( | |
STABLELM_TOKENIZER, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=self.max_generation_token, | |
do_sample=True, | |
top_p=self.top_p, | |
top_k=1000, | |
temperature=self.temperature, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=STABLELM_MODEL.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_text = "" | |
for new_text in streamer: | |
partial_text += new_text | |
yield partial_text | |