Spaces:
Sleeping
Sleeping
create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchvision
|
| 3 |
+
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
|
| 11 |
+
# Load the pre-trained model once
|
| 12 |
+
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
# COCO class names
|
| 16 |
+
COCO_INSTANCE_CATEGORY_NAMES = [
|
| 17 |
+
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
| 18 |
+
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
|
| 19 |
+
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
| 20 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
|
| 21 |
+
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
|
| 22 |
+
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
|
| 23 |
+
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
|
| 24 |
+
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
|
| 25 |
+
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
|
| 26 |
+
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
| 27 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
|
| 28 |
+
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
# Gradio-compatible detection function
|
| 32 |
+
def detect_objects(image, threshold=0.5):
|
| 33 |
+
if image is None:
|
| 34 |
+
print("Image is None, returning empty output", file=sys.stderr)
|
| 35 |
+
# Create a blank image as output
|
| 36 |
+
blank_img = Image.new('RGB', (400, 400), color='white')
|
| 37 |
+
plt.figure(figsize=(10, 10))
|
| 38 |
+
plt.imshow(blank_img)
|
| 39 |
+
plt.text(0.5, 0.5, "No image provided",
|
| 40 |
+
horizontalalignment='center', verticalalignment='center',
|
| 41 |
+
transform=plt.gca().transAxes, fontsize=20)
|
| 42 |
+
plt.axis('off')
|
| 43 |
+
output_path = "blank_output.png"
|
| 44 |
+
plt.savefig(output_path)
|
| 45 |
+
plt.close()
|
| 46 |
+
return output_path
|
| 47 |
+
|
| 48 |
+
try:
|
| 49 |
+
print(f"Processing image of type {type(image)} and threshold {threshold}", file=sys.stderr)
|
| 50 |
+
# Make sure threshold is a valid number
|
| 51 |
+
if threshold is None:
|
| 52 |
+
threshold = 0.5
|
| 53 |
+
print("Threshold was None, using default 0.5", file=sys.stderr)
|
| 54 |
+
|
| 55 |
+
# Convert threshold to float if it's not already
|
| 56 |
+
threshold = float(threshold)
|
| 57 |
+
|
| 58 |
+
transform = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
|
| 59 |
+
image_tensor = transform(image).unsqueeze(0)
|
| 60 |
+
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
prediction = model(image_tensor)[0]
|
| 63 |
+
|
| 64 |
+
boxes = prediction['boxes'].cpu().numpy()
|
| 65 |
+
labels = prediction['labels'].cpu().numpy()
|
| 66 |
+
scores = prediction['scores'].cpu().numpy()
|
| 67 |
+
|
| 68 |
+
image_np = np.array(image)
|
| 69 |
+
plt.figure(figsize=(10, 10))
|
| 70 |
+
plt.imshow(image_np)
|
| 71 |
+
ax = plt.gca()
|
| 72 |
+
|
| 73 |
+
for box, label, score in zip(boxes, labels, scores):
|
| 74 |
+
# Explicit debug prints to trace the comparison issue
|
| 75 |
+
print(f"Score: {score}, Threshold: {threshold}, Type: {type(score)}/{type(threshold)}", file=sys.stderr)
|
| 76 |
+
|
| 77 |
+
if score >= threshold:
|
| 78 |
+
x1, y1, x2, y2 = box
|
| 79 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1,
|
| 80 |
+
fill=False, color='red', linewidth=2))
|
| 81 |
+
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
|
| 82 |
+
ax.text(x1, y1, f'{class_name}: {score:.2f}', bbox=dict(facecolor='yellow', alpha=0.5),
|
| 83 |
+
fontsize=12, color='black')
|
| 84 |
+
|
| 85 |
+
plt.axis('off')
|
| 86 |
+
plt.tight_layout()
|
| 87 |
+
|
| 88 |
+
# Save the figure to return
|
| 89 |
+
output_path = "output.png"
|
| 90 |
+
plt.savefig(output_path)
|
| 91 |
+
plt.close()
|
| 92 |
+
return output_path
|
| 93 |
+
except Exception as e:
|
| 94 |
+
print(f"Error in detect_objects: {e}", file=sys.stderr)
|
| 95 |
+
import traceback
|
| 96 |
+
traceback.print_exc(file=sys.stderr)
|
| 97 |
+
|
| 98 |
+
# Create an error image
|
| 99 |
+
error_img = Image.new('RGB', (400, 400), color='white')
|
| 100 |
+
plt.figure(figsize=(10, 10))
|
| 101 |
+
plt.imshow(error_img)
|
| 102 |
+
plt.text(0.5, 0.5, f"Error: {str(e)}",
|
| 103 |
+
horizontalalignment='center', verticalalignment='center',
|
| 104 |
+
transform=plt.gca().transAxes, fontsize=12, wrap=True)
|
| 105 |
+
plt.axis('off')
|
| 106 |
+
error_path = "error_output.png"
|
| 107 |
+
plt.savefig(error_path)
|
| 108 |
+
plt.close()
|
| 109 |
+
return error_path
|
| 110 |
+
|
| 111 |
+
# Create direct file paths for examples
|
| 112 |
+
# These exact filenames match what's visible in your repository
|
| 113 |
+
examples = [
|
| 114 |
+
os.path.join("/home/user/app", "TEST_IMG_1.jpg"),
|
| 115 |
+
os.path.join("/home/user/app", "TEST_IMG_2.JPG"),
|
| 116 |
+
os.path.join("/home/user/app", "TEST_IMG_3.jpg"),
|
| 117 |
+
os.path.join("/home/user/app", "TEST_IMG_4.jpg")
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
# Create Gradio interface
|
| 121 |
+
# Important: For Gradio examples, we need to create a list of lists
|
| 122 |
+
example_list = [[path] for path in examples if os.path.exists(path)]
|
| 123 |
+
|
| 124 |
+
print(f"Found {len(example_list)} valid examples: {example_list}", file=sys.stderr)
|
| 125 |
+
|
| 126 |
+
# Create Gradio interface with a simplified approach
|
| 127 |
+
interface = gr.Interface(
|
| 128 |
+
fn=detect_objects,
|
| 129 |
+
inputs=[
|
| 130 |
+
gr.Image(type="pil", label="Input Image"),
|
| 131 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold")
|
| 132 |
+
],
|
| 133 |
+
outputs=gr.Image(type="filepath", label="Detected Objects"),
|
| 134 |
+
title="Faster R-CNN Object Detection",
|
| 135 |
+
description="Upload an image to detect objects using a pretrained Faster R-CNN model.",
|
| 136 |
+
examples=example_list,
|
| 137 |
+
cache_examples=False # Disable caching to avoid potential issues
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# Launch with specific configuration for Hugging Face
|
| 141 |
+
if __name__ == "__main__":
|
| 142 |
+
# Launch with debug mode enabled
|
| 143 |
+
interface.launch(debug=True)
|