Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,19 +11,11 @@ import os
|
|
| 11 |
import sys
|
| 12 |
import io
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 18 |
-
stream=sys.stderr)
|
| 19 |
-
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
-
# Load
|
| 22 |
-
logger.info("Loading Faster R-CNN model...")
|
| 23 |
-
rcnn_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
| 24 |
-
rcnn_model.eval()
|
| 25 |
-
|
| 26 |
-
logger.info("Loading DETR model...")
|
| 27 |
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 28 |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
| 29 |
|
|
@@ -43,295 +35,168 @@ COCO_INSTANCE_CATEGORY_NAMES = [
|
|
| 43 |
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
| 44 |
]
|
| 45 |
|
| 46 |
-
def
|
| 47 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
if image is None:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
try:
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
# Convert threshold to float
|
| 56 |
-
threshold = float(threshold)
|
| 57 |
-
|
| 58 |
-
# Apply transforms required by the model
|
| 59 |
transform = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
|
| 60 |
image_tensor = transform(image).unsqueeze(0)
|
| 61 |
-
|
| 62 |
-
# Run detection
|
| 63 |
with torch.no_grad():
|
| 64 |
-
prediction =
|
| 65 |
-
|
| 66 |
-
# Extract results
|
| 67 |
boxes = prediction['boxes'].cpu().numpy()
|
| 68 |
labels = prediction['labels'].cpu().numpy()
|
| 69 |
scores = prediction['scores'].cpu().numpy()
|
| 70 |
-
|
| 71 |
-
# Create visualization
|
| 72 |
image_np = np.array(image)
|
| 73 |
plt.figure(figsize=(10, 10))
|
| 74 |
plt.imshow(image_np)
|
| 75 |
ax = plt.gca()
|
| 76 |
-
|
| 77 |
-
# Draw bounding boxes
|
| 78 |
for box, label, score in zip(boxes, labels, scores):
|
| 79 |
if score >= threshold:
|
| 80 |
x1, y1, x2, y2 = box
|
| 81 |
-
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1,
|
| 82 |
-
fill=False, color='red', linewidth=2))
|
| 83 |
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
|
| 84 |
-
ax.text(x1, y1, f'{class_name}: {score:.2f}',
|
| 85 |
-
|
| 86 |
-
fontsize=12, color='black')
|
| 87 |
-
|
| 88 |
-
plt.title("Faster R-CNN Detection")
|
| 89 |
plt.axis('off')
|
| 90 |
plt.tight_layout()
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
output = io.BytesIO()
|
| 94 |
-
plt.savefig(output, format='png')
|
| 95 |
plt.close()
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
return Image.open(output)
|
| 99 |
-
|
| 100 |
except Exception as e:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
def
|
| 107 |
-
"""
|
| 108 |
if image is None:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
try:
|
| 113 |
-
logger.info(f"Processing image with DETR (threshold: {threshold})")
|
| 114 |
-
|
| 115 |
-
# Convert threshold to float
|
| 116 |
-
threshold = float(threshold)
|
| 117 |
-
|
| 118 |
-
# Process image and run model
|
| 119 |
inputs = detr_processor(images=image, return_tensors="pt")
|
| 120 |
outputs = detr_model(**inputs)
|
| 121 |
-
|
| 122 |
-
# Post-process results
|
| 123 |
target_sizes = torch.tensor([image.size[::-1]])
|
| 124 |
-
results = detr_processor.post_process_object_detection(
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
# Create visualization
|
| 128 |
fig, ax = plt.subplots(1, figsize=(10, 10))
|
| 129 |
ax.imshow(image)
|
| 130 |
-
|
| 131 |
-
# Draw bounding boxes
|
| 132 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 133 |
xmin, ymin, xmax, ymax = box.tolist()
|
| 134 |
-
ax.add_patch(patches.Rectangle(
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
bbox=dict(facecolor='cyan', alpha=0.5), fontsize=12)
|
| 139 |
-
|
| 140 |
-
plt.title("DETR Detection")
|
| 141 |
plt.axis('off')
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
# Save result to image
|
| 145 |
-
output = io.BytesIO()
|
| 146 |
-
plt.savefig(output, format='png')
|
| 147 |
plt.close(fig)
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
return Image.open(output)
|
| 151 |
-
|
| 152 |
except Exception as e:
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
logger.error("No image provided for comparison")
|
| 162 |
-
return create_error_image("No image provided")
|
| 163 |
-
|
| 164 |
-
try:
|
| 165 |
-
logger.info(f"Comparing both models with threshold: {threshold}")
|
| 166 |
-
|
| 167 |
-
# Run both models
|
| 168 |
-
rcnn_result = faster_rcnn_detection(image, threshold)
|
| 169 |
-
detr_result = detr_detection(image, threshold)
|
| 170 |
-
|
| 171 |
-
# Create side-by-side comparison
|
| 172 |
-
fig, axes = plt.subplots(1, 2, figsize=(20, 10))
|
| 173 |
-
|
| 174 |
-
axes[0].imshow(np.array(rcnn_result))
|
| 175 |
-
axes[0].set_title("Faster R-CNN Detection", fontsize=16)
|
| 176 |
-
axes[0].axis('off')
|
| 177 |
-
|
| 178 |
-
axes[1].imshow(np.array(detr_result))
|
| 179 |
-
axes[1].set_title("DETR Detection", fontsize=16)
|
| 180 |
-
axes[1].axis('off')
|
| 181 |
-
|
| 182 |
-
plt.tight_layout()
|
| 183 |
-
|
| 184 |
-
# Save comparison to image
|
| 185 |
-
output = io.BytesIO()
|
| 186 |
-
plt.savefig(output, format='png', dpi=120)
|
| 187 |
plt.close(fig)
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
return Image.open(output)
|
| 191 |
-
|
| 192 |
-
except Exception as e:
|
| 193 |
-
logger.error(f"Error in comparison: {e}")
|
| 194 |
-
import traceback
|
| 195 |
-
traceback.print_exc(file=sys.stderr)
|
| 196 |
-
return create_error_image(f"Comparison error: {str(e)}")
|
| 197 |
|
| 198 |
-
def
|
| 199 |
-
"""
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
ax.text(0.5, 0.5, f"Error: {error_text}",
|
| 204 |
-
horizontalalignment='center', verticalalignment='center',
|
| 205 |
-
transform=ax.transAxes, fontsize=14, wrap=True)
|
| 206 |
-
ax.axis('off')
|
| 207 |
-
|
| 208 |
-
# Save to buffer
|
| 209 |
-
buf = io.BytesIO()
|
| 210 |
-
plt.savefig(buf, format='png')
|
| 211 |
-
plt.close(fig)
|
| 212 |
-
buf.seek(0)
|
| 213 |
-
|
| 214 |
-
return Image.open(buf)
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
if
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
if model_choice == "Faster R-CNN":
|
| 222 |
-
return faster_rcnn_detection(image, threshold)
|
| 223 |
-
elif model_choice == "DETR":
|
| 224 |
-
return detr_detection(image, threshold)
|
| 225 |
-
elif model_choice == "Compare Both":
|
| 226 |
-
return compare_detections(image, threshold)
|
| 227 |
-
else:
|
| 228 |
-
return create_error_image(f"Unknown model choice: {model_choice}")
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
**Suited for:**
|
| 242 |
-
- General object detection tasks
|
| 243 |
-
- Scenes with multiple objects of different scales
|
| 244 |
-
- When detection accuracy is more important than speed
|
| 245 |
-
"""
|
| 246 |
-
elif model_choice == "DETR":
|
| 247 |
-
return """
|
| 248 |
-
**DETR (DEtection TRansformer)** is an end-to-end object detection model using transformers.
|
| 249 |
-
|
| 250 |
-
**Strengths:**
|
| 251 |
-
- Clean, end-to-end architecture without manual anchors or NMS
|
| 252 |
-
- Strong spatial reasoning via self-attention
|
| 253 |
-
- Good at dealing with occlusion
|
| 254 |
-
|
| 255 |
-
**Suited for:**
|
| 256 |
-
- Scenes with overlapping objects
|
| 257 |
-
- When you need global context understanding
|
| 258 |
-
- Modern transformer-based approach to detection
|
| 259 |
-
"""
|
| 260 |
-
elif model_choice == "Compare Both":
|
| 261 |
-
return """
|
| 262 |
-
**Comparison Mode** runs both Faster R-CNN and DETR side by side to compare their detection results.
|
| 263 |
-
|
| 264 |
-
This is useful for:
|
| 265 |
-
- Understanding the strengths of each model
|
| 266 |
-
- Seeing how detection approaches differ
|
| 267 |
-
- Choosing the right model for your specific use case
|
| 268 |
-
"""
|
| 269 |
-
return ""
|
| 270 |
|
| 271 |
-
#
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
label="Detection Model"
|
| 291 |
-
)
|
| 292 |
-
threshold_slider = gr.Slider(
|
| 293 |
-
minimum=0.0, maximum=1.0, value=0.5, step=0.05,
|
| 294 |
-
label="Confidence Threshold"
|
| 295 |
-
)
|
| 296 |
-
detect_button = gr.Button("Detect Objects", variant="primary")
|
| 297 |
-
|
| 298 |
-
# Model info box
|
| 299 |
-
model_info_box = gr.Markdown()
|
| 300 |
-
|
| 301 |
-
with gr.Column(scale=2):
|
| 302 |
-
# Output image
|
| 303 |
-
output_image = gr.Image(label="Detection Results")
|
| 304 |
-
|
| 305 |
-
# Connect components
|
| 306 |
-
detect_button.click(
|
| 307 |
-
detect_objects,
|
| 308 |
-
inputs=[input_image, model_dropdown, threshold_slider],
|
| 309 |
-
outputs=output_image
|
| 310 |
-
)
|
| 311 |
-
|
| 312 |
-
model_dropdown.change(
|
| 313 |
-
model_info,
|
| 314 |
-
inputs=model_dropdown,
|
| 315 |
-
outputs=model_info_box
|
| 316 |
-
)
|
| 317 |
-
|
| 318 |
-
# Add examples
|
| 319 |
-
examples_dir = "/home/user/app"
|
| 320 |
-
examples = [
|
| 321 |
-
[os.path.join(examples_dir, "TEST_IMG_1.jpg"), "Compare Both", 0.5],
|
| 322 |
-
[os.path.join(examples_dir, "TEST_IMG_2.JPG"), "Compare Both", 0.5],
|
| 323 |
-
[os.path.join(examples_dir, "TEST_IMG_3.jpg"), "Compare Both", 0.5],
|
| 324 |
-
[os.path.join(examples_dir, "TEST_IMG_4.jpg"), "Compare Both", 0.5]
|
| 325 |
-
]
|
| 326 |
-
|
| 327 |
-
gr.Examples(
|
| 328 |
-
examples=examples,
|
| 329 |
-
inputs=[input_image, model_dropdown, threshold_slider],
|
| 330 |
-
outputs=output_image,
|
| 331 |
-
fn=detect_objects,
|
| 332 |
-
cache_examples=False
|
| 333 |
-
)
|
| 334 |
|
| 335 |
-
# Launch the app
|
| 336 |
if __name__ == "__main__":
|
| 337 |
-
|
|
|
|
| 11 |
import sys
|
| 12 |
import io
|
| 13 |
|
| 14 |
+
# Load Faster R-CNN model
|
| 15 |
+
frcnn_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
| 16 |
+
frcnn_model.eval()
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Load DETR model and processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 20 |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
| 21 |
|
|
|
|
| 35 |
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
| 36 |
]
|
| 37 |
|
| 38 |
+
def recommend_model(image):
|
| 39 |
+
"""Provide a basic model recommendation based on image characteristics."""
|
| 40 |
+
if image is None:
|
| 41 |
+
return "Please upload an image to get a recommendation."
|
| 42 |
+
try:
|
| 43 |
+
img_array = np.array(image)
|
| 44 |
+
height, width = img_array.shape[:2]
|
| 45 |
+
pixel_variance = np.var(img_array)
|
| 46 |
+
# Basic heuristic: DETR is better for high-resolution, complex images; Faster R-CNN for smaller, simpler ones
|
| 47 |
+
if height * width > 1000 * 1000 or pixel_variance > 1000:
|
| 48 |
+
return "DETR is recommended for high-resolution or complex images."
|
| 49 |
+
else:
|
| 50 |
+
return "Faster R-CNN is recommended for smaller or simpler images."
|
| 51 |
+
except Exception as e:
|
| 52 |
+
return f"Error in recommendation: {str(e)}"
|
| 53 |
+
|
| 54 |
+
def detect_objects_frcnn(image, threshold=0.5):
|
| 55 |
+
"""Run Faster R-CNN detection."""
|
| 56 |
if image is None:
|
| 57 |
+
blank_img = Image.new('RGB', (400, 400), color='white')
|
| 58 |
+
plt.figure(figsize=(10, 10))
|
| 59 |
+
plt.imshow(blank_img)
|
| 60 |
+
plt.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
|
| 61 |
+
transform=plt.gca().transAxes, fontsize=20)
|
| 62 |
+
plt.axis('off')
|
| 63 |
+
output_path = "frcnn_blank_output.png"
|
| 64 |
+
plt.savefig(output_path)
|
| 65 |
+
plt.close()
|
| 66 |
+
return output_path
|
| 67 |
+
|
| 68 |
try:
|
| 69 |
+
threshold = float(threshold) if threshold is not None else 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
transform = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
|
| 71 |
image_tensor = transform(image).unsqueeze(0)
|
| 72 |
+
|
|
|
|
| 73 |
with torch.no_grad():
|
| 74 |
+
prediction = frcnn_model(image_tensor)[0]
|
| 75 |
+
|
|
|
|
| 76 |
boxes = prediction['boxes'].cpu().numpy()
|
| 77 |
labels = prediction['labels'].cpu().numpy()
|
| 78 |
scores = prediction['scores'].cpu().numpy()
|
| 79 |
+
|
|
|
|
| 80 |
image_np = np.array(image)
|
| 81 |
plt.figure(figsize=(10, 10))
|
| 82 |
plt.imshow(image_np)
|
| 83 |
ax = plt.gca()
|
| 84 |
+
|
|
|
|
| 85 |
for box, label, score in zip(boxes, labels, scores):
|
| 86 |
if score >= threshold:
|
| 87 |
x1, y1, x2, y2 = box
|
| 88 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, color='red', linewidth=2))
|
|
|
|
| 89 |
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
|
| 90 |
+
ax.text(x1, y1, f'{class_name}: {score:.2f}', bbox=dict(facecolor='yellow', alpha=0.5), fontsize=12, color='black')
|
| 91 |
+
|
|
|
|
|
|
|
|
|
|
| 92 |
plt.axis('off')
|
| 93 |
plt.tight_layout()
|
| 94 |
+
output_path = "frcnn_output.png"
|
| 95 |
+
plt.savefig(output_path)
|
|
|
|
|
|
|
| 96 |
plt.close()
|
| 97 |
+
return output_path
|
|
|
|
|
|
|
|
|
|
| 98 |
except Exception as e:
|
| 99 |
+
error_img = Image.new('RGB', (400, 400), color='white')
|
| 100 |
+
plt.figure(figsize=(10, 10))
|
| 101 |
+
plt.imshow(error_img)
|
| 102 |
+
plt.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
|
| 103 |
+
transform=plt.gca().transAxes, fontsize=12, wrap=True)
|
| 104 |
+
plt.axis('off')
|
| 105 |
+
error_path = "frcnn_error_output.png"
|
| 106 |
+
plt.savefig(error_path)
|
| 107 |
+
plt.close()
|
| 108 |
+
return error_path
|
| 109 |
|
| 110 |
+
def detect_objects_detr(image, threshold=0.9):
|
| 111 |
+
"""Run DETR detection."""
|
| 112 |
if image is None:
|
| 113 |
+
blank_img = Image.new('RGB', (400, 400), color='white')
|
| 114 |
+
fig, ax = plt.subplots(1, figsize=(10, 10))
|
| 115 |
+
ax.imshow(blank_img)
|
| 116 |
+
ax.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
|
| 117 |
+
transform=ax.transAxes, fontsize=20)
|
| 118 |
+
plt.axis('off')
|
| 119 |
+
buf = io.BytesIO()
|
| 120 |
+
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
| 121 |
+
plt.close(fig)
|
| 122 |
+
buf.seek(0)
|
| 123 |
+
return Image.open(buf)
|
| 124 |
+
|
| 125 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
inputs = detr_processor(images=image, return_tensors="pt")
|
| 127 |
outputs = detr_model(**inputs)
|
|
|
|
|
|
|
| 128 |
target_sizes = torch.tensor([image.size[::-1]])
|
| 129 |
+
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[0]
|
| 130 |
+
|
|
|
|
|
|
|
| 131 |
fig, ax = plt.subplots(1, figsize=(10, 10))
|
| 132 |
ax.imshow(image)
|
| 133 |
+
|
|
|
|
| 134 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 135 |
xmin, ymin, xmax, ymax = box.tolist()
|
| 136 |
+
ax.add_patch(patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, linewidth=2, edgecolor='red', facecolor='none'))
|
| 137 |
+
ax.text(xmin, ymin, f"{detr_model.config.id2label[label.item()]}: {round(score.item(), 2)}",
|
| 138 |
+
bbox=dict(facecolor='yellow', alpha=0.5), fontsize=8)
|
| 139 |
+
|
|
|
|
|
|
|
|
|
|
| 140 |
plt.axis('off')
|
| 141 |
+
buf = io.BytesIO()
|
| 142 |
+
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
|
|
|
|
|
|
|
|
|
| 143 |
plt.close(fig)
|
| 144 |
+
buf.seek(0)
|
| 145 |
+
return Image.open(buf)
|
|
|
|
|
|
|
| 146 |
except Exception as e:
|
| 147 |
+
error_img = Image.new('RGB', (400, 400), color='white')
|
| 148 |
+
fig, ax = plt.subplots(1, figsize=(10, 10))
|
| 149 |
+
ax.imshow(error_img)
|
| 150 |
+
ax.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
|
| 151 |
+
transform=ax.transAxes, fontsize=12, wrap=True)
|
| 152 |
+
plt.axis('off')
|
| 153 |
+
buf = io.BytesIO()
|
| 154 |
+
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
plt.close(fig)
|
| 156 |
+
buf.seek(0)
|
| 157 |
+
return Image.open(buf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
+
def run_detection(image, model_choice, frcnn_threshold=0.5, detr_threshold=0.9):
|
| 160 |
+
"""Run detection based on model choice and return results with recommendation."""
|
| 161 |
+
recommendation = recommend_model(image)
|
| 162 |
+
frcnn_result = None
|
| 163 |
+
detr_result = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
if model_choice in ["Faster R-CNN", "Both"]:
|
| 166 |
+
frcnn_result = detect_objects_frcnn(image, frcnn_threshold)
|
| 167 |
+
if model_choice in ["DETR", "Both"]:
|
| 168 |
+
detr_result = detect_objects_detr(image, detr_threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
return recommendation, frcnn_result, detr_result
|
| 171 |
+
|
| 172 |
+
# Example image paths
|
| 173 |
+
examples = [
|
| 174 |
+
os.path.join("/home/user/app", "TEST_IMG_1.jpg"),
|
| 175 |
+
os.path.join("/home/user/app", "TEST_IMG_2.JPG"),
|
| 176 |
+
os.path.join("/home/user/app", "TEST_IMG_3.jpg"),
|
| 177 |
+
os.path.join("/home/user/app", "TEST_IMG_4.jpg")
|
| 178 |
+
]
|
| 179 |
+
example_list = [[path] for path in examples if os.path.exists(path)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
# Gradio interface
|
| 182 |
+
interface = gr.Interface(
|
| 183 |
+
fn=run_detection,
|
| 184 |
+
inputs=[
|
| 185 |
+
gr.Image(type="pil", label="Input Image"),
|
| 186 |
+
gr.Dropdown(choices=["Faster R-CNN", "DETR", "Both"], label="Model Choice", value="Both"),
|
| 187 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Faster R-CNN Confidence Threshold"),
|
| 188 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="DETR Confidence Threshold")
|
| 189 |
+
],
|
| 190 |
+
outputs=[
|
| 191 |
+
gr.Textbox(label="Model Recommendation"),
|
| 192 |
+
gr.Image(type="filepath", label="Faster R-CNN Result"),
|
| 193 |
+
gr.Image(type="pil", label="DETR Result")
|
| 194 |
+
],
|
| 195 |
+
title="Object Detection: Faster R-CNN vs DETR",
|
| 196 |
+
description="Upload an image, select a model (or both), and view object detection results. A recommendation is provided based on image characteristics.",
|
| 197 |
+
examples=example_list,
|
| 198 |
+
cache_examples=False
|
| 199 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
|
|
|
| 201 |
if __name__ == "__main__":
|
| 202 |
+
interface.launch(debug=True)
|