Upload 4 files
Browse files- README.md +1 -1
- app.py +14 -6
- multit2i.py +86 -18
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: votepurchase Liked Text-to-Image Models Playground
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: votepurchase Liked Text-to-Image Models Playground
|
3 |
+
emoji: 🖼️❤
|
4 |
colorFrom: red
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -50,13 +50,18 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
50 |
clear_prompt = gr.Button(value="Clear Prompt 🗑️", size="sm", scale=1)
|
51 |
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
52 |
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
|
|
|
|
|
|
|
|
|
|
|
53 |
with gr.Accordion("Recommended Prompt", open=False):
|
54 |
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
55 |
with gr.Row():
|
56 |
positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
|
57 |
positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
|
58 |
-
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[]
|
59 |
-
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"]
|
60 |
with gr.Accordion("Prompt Transformer", open=False):
|
61 |
v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
|
62 |
v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
|
@@ -101,6 +106,7 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
101 |
"""
|
102 |
)
|
103 |
gr.DuplicateButton(value="Duplicate Space")
|
|
|
104 |
|
105 |
gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
|
106 |
model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
|
@@ -109,12 +115,14 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
109 |
img_i = gr.Number(i, visible=False)
|
110 |
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
111 |
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
|
112 |
-
fn=lambda i, n, m, t1, t2, l1, l2, l3, l4: infer_fn(m, t1, t2, l1, l2, l3, l4) if (i < n) else None,
|
113 |
-
inputs=[img_i, image_num, model_name, prompt, neg_prompt,
|
|
|
114 |
outputs=[o], queue=True, show_api=False)
|
115 |
gen_event2 = gr.on(triggers=[random_button.click],
|
116 |
-
fn=lambda i, n, m, t1, t2, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, l1, l2, l3, l4) if (i < n) else None,
|
117 |
-
inputs=[img_i, image_num, model_name, prompt, neg_prompt,
|
|
|
118 |
outputs=[o], queue=True, show_api=False)
|
119 |
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
120 |
stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)
|
|
|
50 |
clear_prompt = gr.Button(value="Clear Prompt 🗑️", size="sm", scale=1)
|
51 |
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
52 |
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
|
53 |
+
with gr.Accordion("Advanced options", open=False):
|
54 |
+
width = gr.Number(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=None)
|
55 |
+
height = gr.Number(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=None)
|
56 |
+
steps = gr.Number(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=None)
|
57 |
+
cfg = gr.Number(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=None)
|
58 |
with gr.Accordion("Recommended Prompt", open=False):
|
59 |
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
60 |
with gr.Row():
|
61 |
positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
|
62 |
positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
|
63 |
+
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
|
64 |
+
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
|
65 |
with gr.Accordion("Prompt Transformer", open=False):
|
66 |
v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
|
67 |
v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
|
|
|
106 |
"""
|
107 |
)
|
108 |
gr.DuplicateButton(value="Duplicate Space")
|
109 |
+
gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.")
|
110 |
|
111 |
gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
|
112 |
model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
|
|
|
115 |
img_i = gr.Number(i, visible=False)
|
116 |
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
117 |
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
|
118 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
|
119 |
+
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
|
120 |
+
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
121 |
outputs=[o], queue=True, show_api=False)
|
122 |
gen_event2 = gr.on(triggers=[random_button.click],
|
123 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
|
124 |
+
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
|
125 |
+
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
126 |
outputs=[o], queue=True, show_api=False)
|
127 |
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
128 |
stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)
|
multit2i.py
CHANGED
@@ -2,6 +2,11 @@ import gradio as gr
|
|
2 |
import asyncio
|
3 |
from threading import RLock
|
4 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
lock = RLock()
|
@@ -80,7 +85,7 @@ def get_t2i_model_info_dict(repo_id: str):
|
|
80 |
return info
|
81 |
|
82 |
|
83 |
-
def rename_image(image_path: str | None, model_name: str):
|
84 |
from PIL import Image
|
85 |
from datetime import datetime, timezone, timedelta
|
86 |
if image_path is None: return None
|
@@ -90,7 +95,10 @@ def rename_image(image_path: str | None, model_name: str):
|
|
90 |
if Path(image_path).exists():
|
91 |
png_path = "image.png"
|
92 |
Image.open(image_path).convert('RGBA').save(png_path, "PNG")
|
93 |
-
|
|
|
|
|
|
|
94 |
return new_path
|
95 |
else:
|
96 |
return None
|
@@ -125,13 +133,14 @@ def load_from_model(model_name: str, hf_token: str = None):
|
|
125 |
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
|
126 |
)
|
127 |
headers["X-Wait-For-Model"] = "true"
|
128 |
-
client = huggingface_hub.InferenceClient(model=model_name, headers=headers,
|
|
|
129 |
inputs = gr.components.Textbox(label="Input")
|
130 |
outputs = gr.components.Image(label="Output")
|
131 |
fn = client.text_to_image
|
132 |
|
133 |
-
def query_huggingface_inference_endpoints(*data):
|
134 |
-
return fn(*data)
|
135 |
|
136 |
interface_info = {
|
137 |
"fn": query_huggingface_inference_endpoints,
|
@@ -164,6 +173,34 @@ def load_model(model_name: str):
|
|
164 |
return loaded_models[model_name]
|
165 |
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
def load_models(models: list):
|
168 |
for model in models:
|
169 |
load_model(model)
|
@@ -276,21 +313,48 @@ def get_model_info_md(model_name: str):
|
|
276 |
|
277 |
|
278 |
def change_model(model_name: str):
|
279 |
-
|
280 |
return get_model_info_md(model_name)
|
281 |
|
282 |
|
283 |
def warm_model(model_name: str):
|
284 |
-
model =
|
285 |
if model:
|
286 |
try:
|
287 |
print(f"Warming model: {model_name}")
|
288 |
-
model
|
289 |
except Exception as e:
|
290 |
print(e)
|
291 |
|
292 |
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
import random
|
295 |
noise = ""
|
296 |
rand = random.randint(1, 500)
|
@@ -298,7 +362,8 @@ async def infer(model_name: str, prompt: str, neg_prompt: str, timeout: float):
|
|
298 |
noise += " "
|
299 |
model = load_model(model_name)
|
300 |
if not model: return None
|
301 |
-
task = asyncio.create_task(asyncio.to_thread(model, f
|
|
|
302 |
await asyncio.sleep(0)
|
303 |
try:
|
304 |
result = await asyncio.wait_for(task, timeout=timeout)
|
@@ -309,20 +374,21 @@ async def infer(model_name: str, prompt: str, neg_prompt: str, timeout: float):
|
|
309 |
result = None
|
310 |
if task.done() and result is not None:
|
311 |
with lock:
|
312 |
-
image = rename_image(result, model_name)
|
313 |
return image
|
314 |
return None
|
315 |
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
|
320 |
if model_name == 'NA':
|
321 |
return None
|
322 |
try:
|
323 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
324 |
loop = asyncio.new_event_loop()
|
325 |
-
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt,
|
|
|
326 |
except (Exception, asyncio.CancelledError) as e:
|
327 |
print(e)
|
328 |
print(f"Task aborted: {model_name}")
|
@@ -332,8 +398,9 @@ def infer_fn(model_name: str, prompt: str, neg_prompt: str,
|
|
332 |
return result
|
333 |
|
334 |
|
335 |
-
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str,
|
336 |
-
|
|
|
337 |
import random
|
338 |
if model_name_dummy == 'NA':
|
339 |
return None
|
@@ -342,7 +409,8 @@ def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str,
|
|
342 |
try:
|
343 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
344 |
loop = asyncio.new_event_loop()
|
345 |
-
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt,
|
|
|
346 |
except (Exception, asyncio.CancelledError) as e:
|
347 |
print(e)
|
348 |
print(f"Task aborted: {model_name}")
|
|
|
2 |
import asyncio
|
3 |
from threading import RLock
|
4 |
from pathlib import Path
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
|
7 |
+
|
8 |
+
server_timeout = 600
|
9 |
+
inference_timeout = 300
|
10 |
|
11 |
|
12 |
lock = RLock()
|
|
|
85 |
return info
|
86 |
|
87 |
|
88 |
+
def rename_image(image_path: str | None, model_name: str, save_path: str | None = None):
|
89 |
from PIL import Image
|
90 |
from datetime import datetime, timezone, timedelta
|
91 |
if image_path is None: return None
|
|
|
95 |
if Path(image_path).exists():
|
96 |
png_path = "image.png"
|
97 |
Image.open(image_path).convert('RGBA').save(png_path, "PNG")
|
98 |
+
if save_path is not None:
|
99 |
+
new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve()))
|
100 |
+
else:
|
101 |
+
new_path = str(Path(png_path).resolve().rename(Path(filename).resolve()))
|
102 |
return new_path
|
103 |
else:
|
104 |
return None
|
|
|
133 |
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
|
134 |
)
|
135 |
headers["X-Wait-For-Model"] = "true"
|
136 |
+
client = huggingface_hub.InferenceClient(model=model_name, headers=headers,
|
137 |
+
token=hf_token, timeout=server_timeout)
|
138 |
inputs = gr.components.Textbox(label="Input")
|
139 |
outputs = gr.components.Image(label="Output")
|
140 |
fn = client.text_to_image
|
141 |
|
142 |
+
def query_huggingface_inference_endpoints(*data, **kwargs):
|
143 |
+
return fn(*data, **kwargs)
|
144 |
|
145 |
interface_info = {
|
146 |
"fn": query_huggingface_inference_endpoints,
|
|
|
173 |
return loaded_models[model_name]
|
174 |
|
175 |
|
176 |
+
def load_model_api(model_name: str):
|
177 |
+
global loaded_models
|
178 |
+
global model_info_dict
|
179 |
+
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
180 |
+
try:
|
181 |
+
client = InferenceClient(timeout=5)
|
182 |
+
status = client.get_model_status(model_name)
|
183 |
+
if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]:
|
184 |
+
print(f"Failed to load by API: {model_name}")
|
185 |
+
return None
|
186 |
+
else:
|
187 |
+
loaded_models[model_name] = InferenceClient(model_name, timeout=server_timeout)
|
188 |
+
print(f"Loaded by API: {model_name}")
|
189 |
+
except Exception as e:
|
190 |
+
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
191 |
+
print(f"Failed to load by API: {model_name}")
|
192 |
+
print(e)
|
193 |
+
return None
|
194 |
+
try:
|
195 |
+
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
|
196 |
+
print(f"Assigned by API: {model_name}")
|
197 |
+
except Exception as e:
|
198 |
+
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
|
199 |
+
print(f"Failed to assigned by API: {model_name}")
|
200 |
+
print(e)
|
201 |
+
return loaded_models[model_name]
|
202 |
+
|
203 |
+
|
204 |
def load_models(models: list):
|
205 |
for model in models:
|
206 |
load_model(model)
|
|
|
313 |
|
314 |
|
315 |
def change_model(model_name: str):
|
316 |
+
load_model_api(model_name)
|
317 |
return get_model_info_md(model_name)
|
318 |
|
319 |
|
320 |
def warm_model(model_name: str):
|
321 |
+
model = load_model_api(model_name)
|
322 |
if model:
|
323 |
try:
|
324 |
print(f"Warming model: {model_name}")
|
325 |
+
infer_body(model, " ")
|
326 |
except Exception as e:
|
327 |
print(e)
|
328 |
|
329 |
|
330 |
+
# https://huggingface.co/docs/api-inference/detailed_parameters
|
331 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
332 |
+
def infer_body(client: InferenceClient | gr.Interface, prompt: str, neg_prompt: str | None = None,
|
333 |
+
height: int | None = None, width: int | None = None,
|
334 |
+
steps: int | None = None, cfg: int | None = None):
|
335 |
+
png_path = "image.png"
|
336 |
+
kwargs = {}
|
337 |
+
if height is not None and height >= 256: kwargs["height"] = height
|
338 |
+
if width is not None and width >= 256: kwargs["width"] = width
|
339 |
+
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
|
340 |
+
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
341 |
+
try:
|
342 |
+
if isinstance(client, InferenceClient):
|
343 |
+
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
|
344 |
+
elif isinstance(client, gr.Interface):
|
345 |
+
image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
|
346 |
+
else: return None
|
347 |
+
image.save(png_path)
|
348 |
+
return str(Path(png_path).resolve())
|
349 |
+
except Exception as e:
|
350 |
+
print(e)
|
351 |
+
return None
|
352 |
+
|
353 |
+
|
354 |
+
async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
|
355 |
+
height: int | None = None, width: int | None = None,
|
356 |
+
steps: int | None = None, cfg: int | None = None,
|
357 |
+
save_path: str | None = None, timeout: float = inference_timeout):
|
358 |
import random
|
359 |
noise = ""
|
360 |
rand = random.randint(1, 500)
|
|
|
362 |
noise += " "
|
363 |
model = load_model(model_name)
|
364 |
if not model: return None
|
365 |
+
task = asyncio.create_task(asyncio.to_thread(infer_body, model, f"{prompt} {noise}", neg_prompt,
|
366 |
+
height, width, steps, cfg))
|
367 |
await asyncio.sleep(0)
|
368 |
try:
|
369 |
result = await asyncio.wait_for(task, timeout=timeout)
|
|
|
374 |
result = None
|
375 |
if task.done() and result is not None:
|
376 |
with lock:
|
377 |
+
image = rename_image(result, model_name, save_path)
|
378 |
return image
|
379 |
return None
|
380 |
|
381 |
|
382 |
+
def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
383 |
+
width: int | None = None, steps: int | None = None, cfg: int | None = None,
|
384 |
+
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
385 |
if model_name == 'NA':
|
386 |
return None
|
387 |
try:
|
388 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
389 |
loop = asyncio.new_event_loop()
|
390 |
+
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
391 |
+
steps, cfg, save_path, inference_timeout))
|
392 |
except (Exception, asyncio.CancelledError) as e:
|
393 |
print(e)
|
394 |
print(f"Task aborted: {model_name}")
|
|
|
398 |
return result
|
399 |
|
400 |
|
401 |
+
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
402 |
+
width: int | None = None, steps: int | None = None, cfg: int | None = None,
|
403 |
+
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
404 |
import random
|
405 |
if model_name_dummy == 'NA':
|
406 |
return None
|
|
|
409 |
try:
|
410 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
411 |
loop = asyncio.new_event_loop()
|
412 |
+
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
413 |
+
steps, cfg, save_path, inference_timeout))
|
414 |
except (Exception, asyncio.CancelledError) as e:
|
415 |
print(e)
|
416 |
print(f"Task aborted: {model_name}")
|