Upload 10 files
Browse files- app.py +89 -97
- multit2i.py +88 -36
- tagger/fl2sd3longcap.py +10 -4
- tagger/tagger.py +12 -5
app.py
CHANGED
@@ -1,92 +1,94 @@
|
|
1 |
import gradio as gr
|
2 |
from model import models
|
3 |
-
from multit2i import (
|
4 |
-
load_models, infer_fn, infer_rand_fn, save_gallery,
|
5 |
change_model, warm_model, get_model_info_md, loaded_models,
|
6 |
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
|
7 |
-
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type
|
8 |
-
|
9 |
-
|
10 |
-
predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
|
11 |
-
insert_recom_prompt, compose_prompt_to_copy,
|
12 |
-
)
|
13 |
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
14 |
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
|
15 |
-
from tagger.utils import (
|
16 |
-
|
17 |
-
V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS,
|
18 |
-
)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
load_models(models)
|
23 |
|
24 |
css = """
|
25 |
.model_info { text-align: center; }
|
26 |
-
.output { width=112px; height=112px; !important; }
|
27 |
-
.gallery {
|
28 |
"""
|
29 |
|
30 |
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
31 |
-
with gr.
|
32 |
-
with gr.
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
cfg = gr.Number(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
58 |
-
with gr.Accordion("Recommended Prompt", open=False):
|
59 |
-
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
60 |
with gr.Row():
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
with gr.Row():
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
with gr.Column():
|
91 |
examples = gr.Examples(
|
92 |
examples = [
|
@@ -115,13 +117,13 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
115 |
img_i = gr.Number(i, visible=False)
|
116 |
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
117 |
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
|
118 |
-
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
|
119 |
-
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
|
120 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
121 |
outputs=[o], queue=True, show_api=False)
|
122 |
gen_event2 = gr.on(triggers=[random_button.click],
|
123 |
-
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
|
124 |
-
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
|
125 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
126 |
outputs=[o], queue=True, show_api=False)
|
127 |
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
@@ -135,29 +137,19 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
135 |
random_prompt.click(
|
136 |
v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
|
137 |
v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
|
138 |
-
).success(
|
139 |
-
|
140 |
-
|
141 |
-
convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False,
|
142 |
-
)
|
143 |
-
tagger_generate_from_image.click(
|
144 |
-
lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
|
145 |
).success(
|
146 |
predict_tags_wd,
|
147 |
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
|
148 |
[v2_series, v2_character, prompt, v2_copy],
|
149 |
show_api=False,
|
150 |
-
).success(
|
151 |
-
|
152 |
-
).success(
|
153 |
-
|
154 |
-
).success(
|
155 |
-
convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
|
156 |
-
).success(
|
157 |
-
insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
|
158 |
-
).success(
|
159 |
-
compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False,
|
160 |
-
)
|
161 |
|
162 |
-
demo.queue()
|
163 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from model import models
|
3 |
+
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
|
|
|
4 |
change_model, warm_model, get_model_info_md, loaded_models,
|
5 |
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
|
6 |
+
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type)
|
7 |
+
from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
|
8 |
+
insert_recom_prompt, compose_prompt_to_copy)
|
|
|
|
|
|
|
9 |
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
10 |
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
|
11 |
+
from tagger.utils import (V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
|
12 |
+
V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
|
|
|
|
|
13 |
|
14 |
+
max_images = 6
|
15 |
+
MAX_SEED = 2**32-1
|
16 |
load_models(models)
|
17 |
|
18 |
css = """
|
19 |
.model_info { text-align: center; }
|
20 |
+
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
|
21 |
+
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
|
22 |
"""
|
23 |
|
24 |
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
25 |
+
with gr.Row():
|
26 |
+
with gr.Column(scale=10):
|
27 |
+
with gr.Group():
|
28 |
+
with gr.Accordion("Prompt from Image File", open=False):
|
29 |
+
tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
|
30 |
+
with gr.Accordion(label="Advanced options", open=False):
|
31 |
+
with gr.Row():
|
32 |
+
tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
33 |
+
tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
34 |
+
tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
35 |
+
with gr.Row():
|
36 |
+
tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
37 |
+
tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
38 |
+
tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
39 |
+
tagger_generate_from_image = gr.Button(value="Generate Tags from Image", variant="secondary")
|
40 |
+
with gr.Accordion("Prompt Transformer", open=False):
|
41 |
+
with gr.Row():
|
42 |
+
v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
|
43 |
+
v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
|
44 |
+
v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
|
45 |
+
with gr.Row():
|
46 |
+
v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
|
47 |
+
v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
|
48 |
+
v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
|
49 |
+
v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
50 |
+
v2_copy = gr.Button(value="Copy to clipboard", variant="secondary", size="sm", interactive=False)
|
|
|
|
|
|
|
51 |
with gr.Row():
|
52 |
+
v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
|
53 |
+
v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
|
54 |
+
random_prompt = gr.Button(value="Extend Prompt 🎲", variant="secondary", size="sm", scale=1)
|
55 |
+
clear_prompt = gr.Button(value="Clear Prompt 🗑️", variant="secondary", size="sm", scale=1)
|
56 |
+
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
57 |
+
with gr.Accordion("Advanced options", open=False):
|
58 |
+
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
|
59 |
+
with gr.Row():
|
60 |
+
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
61 |
+
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
62 |
+
with gr.Row():
|
63 |
+
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
64 |
+
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
65 |
+
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
66 |
+
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
67 |
+
with gr.Row():
|
68 |
+
positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
|
69 |
+
positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
|
70 |
+
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
|
71 |
+
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
|
72 |
+
|
73 |
+
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=1)
|
74 |
with gr.Row():
|
75 |
+
run_button = gr.Button("Generate Image", variant="primary", scale=6)
|
76 |
+
random_button = gr.Button("Random Model 🎲", variant="secondary", scale=3)
|
77 |
+
stop_button = gr.Button('Stop', variant="stop", interactive=False, scale=1)
|
78 |
+
with gr.Group():
|
79 |
+
model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
|
80 |
+
model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
|
81 |
+
with gr.Column(scale=10):
|
82 |
+
with gr.Group():
|
83 |
+
with gr.Row():
|
84 |
+
output = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
|
85 |
+
show_download_button=True, show_share_button=False, show_label=False,
|
86 |
+
interactive=False, min_width=80, visible=True) for _ in range(max_images)]
|
87 |
+
with gr.Group():
|
88 |
+
results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
|
89 |
+
container=True, format="png", object_fit="cover", columns=2, rows=2)
|
90 |
+
image_files = gr.Files(label="Download", interactive=False)
|
91 |
+
clear_results = gr.Button("Clear Gallery / Download 🗑️", variant="secondary")
|
92 |
with gr.Column():
|
93 |
examples = gr.Examples(
|
94 |
examples = [
|
|
|
117 |
img_i = gr.Number(i, visible=False)
|
118 |
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
119 |
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
|
120 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
121 |
+
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
122 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
123 |
outputs=[o], queue=True, show_api=False)
|
124 |
gen_event2 = gr.on(triggers=[random_button.click],
|
125 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
126 |
+
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
127 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
128 |
outputs=[o], queue=True, show_api=False)
|
129 |
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
|
|
137 |
random_prompt.click(
|
138 |
v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
|
139 |
v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
|
140 |
+
).success(get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
|
141 |
+
).success(convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False)
|
142 |
+
tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
|
|
|
|
|
|
|
|
|
143 |
).success(
|
144 |
predict_tags_wd,
|
145 |
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
|
146 |
[v2_series, v2_character, prompt, v2_copy],
|
147 |
show_api=False,
|
148 |
+
).success(predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
|
149 |
+
).success(remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
|
150 |
+
).success(convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
|
151 |
+
).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
|
152 |
+
).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
demo.queue(default_concurrency_limit=200, max_size=200)
|
155 |
+
demo.launch(max_threads=400)
|
multit2i.py
CHANGED
@@ -3,8 +3,10 @@ import asyncio
|
|
3 |
from threading import RLock
|
4 |
from pathlib import Path
|
5 |
from huggingface_hub import InferenceClient
|
|
|
6 |
|
7 |
|
|
|
8 |
server_timeout = 600
|
9 |
inference_timeout = 300
|
10 |
|
@@ -31,22 +33,43 @@ def is_repo_name(s):
|
|
31 |
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
32 |
|
33 |
|
34 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
from huggingface_hub import HfApi
|
36 |
-
api = HfApi()
|
37 |
default_tags = ["diffusers"]
|
38 |
if not sort: sort = "last_modified"
|
|
|
39 |
models = []
|
40 |
try:
|
41 |
-
model_infos = api.list_models(author=author,
|
42 |
-
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit
|
43 |
except Exception as e:
|
44 |
print(f"Error: Failed to list models.")
|
45 |
print(e)
|
46 |
return models
|
47 |
for model in model_infos:
|
48 |
-
if not model.private and not model.gated:
|
49 |
-
|
|
|
50 |
models.append(model.id)
|
51 |
if len(models) == limit: break
|
52 |
return models
|
@@ -54,23 +77,24 @@ def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="l
|
|
54 |
|
55 |
def get_t2i_model_info_dict(repo_id: str):
|
56 |
from huggingface_hub import HfApi
|
57 |
-
api = HfApi()
|
58 |
info = {"md": "None"}
|
59 |
try:
|
60 |
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
|
61 |
-
model = api.model_info(repo_id=repo_id)
|
62 |
except Exception as e:
|
63 |
print(f"Error: Failed to get {repo_id}'s info.")
|
64 |
print(e)
|
65 |
return info
|
66 |
-
if model.private or model.gated: return info
|
67 |
try:
|
68 |
tags = model.tags
|
69 |
except Exception as e:
|
70 |
print(e)
|
71 |
return info
|
72 |
if not 'diffusers' in model.tags: return info
|
73 |
-
if 'diffusers:
|
|
|
74 |
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
|
75 |
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
|
76 |
else: info["ver"] = "Other"
|
@@ -118,20 +142,23 @@ def save_gallery(image_path: str | None, images: list[tuple] | None):
|
|
118 |
|
119 |
# https://github.com/gradio-app/gradio/blob/main/gradio/external.py
|
120 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
121 |
-
|
|
|
122 |
import httpx
|
123 |
import huggingface_hub
|
124 |
-
from gradio.exceptions import ModelNotFoundError
|
125 |
model_url = f"https://huggingface.co/{model_name}"
|
126 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
127 |
print(f"Fetching model from: {model_url}")
|
128 |
|
129 |
-
headers = {"Authorization": f"Bearer {hf_token}"}
|
130 |
response = httpx.request("GET", api_url, headers=headers)
|
131 |
if response.status_code != 200:
|
132 |
raise ModelNotFoundError(
|
133 |
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
|
134 |
)
|
|
|
|
|
135 |
headers["X-Wait-For-Model"] = "true"
|
136 |
client = huggingface_hub.InferenceClient(model=model_name, headers=headers,
|
137 |
token=hf_token, timeout=server_timeout)
|
@@ -140,7 +167,14 @@ def load_from_model(model_name: str, hf_token: str = None):
|
|
140 |
fn = client.text_to_image
|
141 |
|
142 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
interface_info = {
|
146 |
"fn": query_huggingface_inference_endpoints,
|
@@ -156,7 +190,7 @@ def load_model(model_name: str):
|
|
156 |
global model_info_dict
|
157 |
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
158 |
try:
|
159 |
-
loaded_models[model_name] = load_from_model(model_name)
|
160 |
print(f"Loaded: {model_name}")
|
161 |
except Exception as e:
|
162 |
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
@@ -179,12 +213,12 @@ def load_model_api(model_name: str):
|
|
179 |
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
180 |
try:
|
181 |
client = InferenceClient(timeout=5)
|
182 |
-
status = client.get_model_status(model_name)
|
183 |
if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]:
|
184 |
print(f"Failed to load by API: {model_name}")
|
185 |
return None
|
186 |
else:
|
187 |
-
loaded_models[model_name] = InferenceClient(model_name, timeout=server_timeout)
|
188 |
print(f"Loaded by API: {model_name}")
|
189 |
except Exception as e:
|
190 |
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
@@ -329,49 +363,58 @@ def warm_model(model_name: str):
|
|
329 |
|
330 |
# https://huggingface.co/docs/api-inference/detailed_parameters
|
331 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
332 |
-
def infer_body(client: InferenceClient | gr.Interface, prompt: str, neg_prompt: str | None = None,
|
333 |
height: int | None = None, width: int | None = None,
|
334 |
-
steps: int | None = None, cfg: int | None = None):
|
335 |
png_path = "image.png"
|
336 |
kwargs = {}
|
337 |
if height is not None and height >= 256: kwargs["height"] = height
|
338 |
if width is not None and width >= 256: kwargs["width"] = width
|
339 |
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
|
340 |
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
|
|
341 |
try:
|
342 |
if isinstance(client, InferenceClient):
|
343 |
-
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
|
344 |
elif isinstance(client, gr.Interface):
|
345 |
-
image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
|
346 |
else: return None
|
|
|
347 |
image.save(png_path)
|
348 |
return str(Path(png_path).resolve())
|
349 |
except Exception as e:
|
350 |
print(e)
|
351 |
-
|
352 |
|
353 |
|
354 |
async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
|
355 |
height: int | None = None, width: int | None = None,
|
356 |
-
steps: int | None = None, cfg: int | None = None,
|
357 |
save_path: str | None = None, timeout: float = inference_timeout):
|
358 |
import random
|
359 |
noise = ""
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
363 |
model = load_model(model_name)
|
364 |
if not model: return None
|
365 |
task = asyncio.create_task(asyncio.to_thread(infer_body, model, f"{prompt} {noise}", neg_prompt,
|
366 |
-
height, width, steps, cfg))
|
367 |
await asyncio.sleep(0)
|
368 |
try:
|
369 |
result = await asyncio.wait_for(task, timeout=timeout)
|
370 |
-
except
|
371 |
print(e)
|
372 |
print(f"Task timed out: {model_name}")
|
373 |
if not task.done(): task.cancel()
|
374 |
result = None
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
if task.done() and result is not None:
|
376 |
with lock:
|
377 |
image = rename_image(result, model_name, save_path)
|
@@ -379,27 +422,32 @@ async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
|
|
379 |
return None
|
380 |
|
381 |
|
|
|
382 |
def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
383 |
-
width: int | None = None, steps: int | None = None, cfg: int | None = None,
|
384 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
385 |
if model_name == 'NA':
|
386 |
return None
|
387 |
try:
|
388 |
-
|
|
|
389 |
loop = asyncio.new_event_loop()
|
|
|
|
|
390 |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
391 |
-
steps, cfg, save_path, inference_timeout))
|
392 |
except (Exception, asyncio.CancelledError) as e:
|
393 |
print(e)
|
394 |
-
print(f"Task aborted: {model_name}")
|
395 |
result = None
|
|
|
396 |
finally:
|
397 |
loop.close()
|
398 |
return result
|
399 |
|
400 |
|
401 |
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
402 |
-
width: int | None = None, steps: int | None = None, cfg: int | None = None,
|
403 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
404 |
import random
|
405 |
if model_name_dummy == 'NA':
|
@@ -407,14 +455,18 @@ def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = N
|
|
407 |
random.seed()
|
408 |
model_name = random.choice(list(loaded_models.keys()))
|
409 |
try:
|
410 |
-
|
|
|
411 |
loop = asyncio.new_event_loop()
|
|
|
|
|
412 |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
413 |
-
steps, cfg, save_path, inference_timeout))
|
414 |
except (Exception, asyncio.CancelledError) as e:
|
415 |
print(e)
|
416 |
-
print(f"Task aborted: {model_name}")
|
417 |
result = None
|
|
|
418 |
finally:
|
419 |
loop.close()
|
420 |
return result
|
|
|
3 |
from threading import RLock
|
4 |
from pathlib import Path
|
5 |
from huggingface_hub import InferenceClient
|
6 |
+
import os
|
7 |
|
8 |
|
9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
10 |
server_timeout = 600
|
11 |
inference_timeout = 300
|
12 |
|
|
|
33 |
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
34 |
|
35 |
|
36 |
+
def get_status(model_name: str):
|
37 |
+
from huggingface_hub import InferenceClient
|
38 |
+
client = InferenceClient(token=HF_TOKEN, timeout=10)
|
39 |
+
return client.get_model_status(model_name)
|
40 |
+
|
41 |
+
|
42 |
+
def is_loadable(model_name: str, force_gpu: bool = False):
|
43 |
+
try:
|
44 |
+
status = get_status(model_name)
|
45 |
+
except Exception as e:
|
46 |
+
print(e)
|
47 |
+
print(f"Couldn't load {model_name}.")
|
48 |
+
return False
|
49 |
+
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
|
50 |
+
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
|
51 |
+
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
|
52 |
+
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
|
53 |
+
|
54 |
+
|
55 |
+
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
56 |
from huggingface_hub import HfApi
|
57 |
+
api = HfApi(token=HF_TOKEN)
|
58 |
default_tags = ["diffusers"]
|
59 |
if not sort: sort = "last_modified"
|
60 |
+
limit = limit * 20 if check_status and force_gpu else limit * 5
|
61 |
models = []
|
62 |
try:
|
63 |
+
model_infos = api.list_models(author=author, task="text-to-image",
|
64 |
+
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
65 |
except Exception as e:
|
66 |
print(f"Error: Failed to list models.")
|
67 |
print(e)
|
68 |
return models
|
69 |
for model in model_infos:
|
70 |
+
if not model.private and not model.gated or HF_TOKEN is not None:
|
71 |
+
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
72 |
+
if not_tag and not_tag in model.tags or not loadable: continue
|
73 |
models.append(model.id)
|
74 |
if len(models) == limit: break
|
75 |
return models
|
|
|
77 |
|
78 |
def get_t2i_model_info_dict(repo_id: str):
|
79 |
from huggingface_hub import HfApi
|
80 |
+
api = HfApi(token=HF_TOKEN)
|
81 |
info = {"md": "None"}
|
82 |
try:
|
83 |
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
|
84 |
+
model = api.model_info(repo_id=repo_id, token=HF_TOKEN)
|
85 |
except Exception as e:
|
86 |
print(f"Error: Failed to get {repo_id}'s info.")
|
87 |
print(e)
|
88 |
return info
|
89 |
+
if model.private or model.gated and HF_TOKEN is None: return info
|
90 |
try:
|
91 |
tags = model.tags
|
92 |
except Exception as e:
|
93 |
print(e)
|
94 |
return info
|
95 |
if not 'diffusers' in model.tags: return info
|
96 |
+
if 'diffusers:FluxPipeline' in tags: info["ver"] = "FLUX.1"
|
97 |
+
elif 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
|
98 |
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
|
99 |
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
|
100 |
else: info["ver"] = "Other"
|
|
|
142 |
|
143 |
# https://github.com/gradio-app/gradio/blob/main/gradio/external.py
|
144 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
145 |
+
from typing import Literal
|
146 |
+
def load_from_model(model_name: str, hf_token: str | Literal[False] | None = None):
|
147 |
import httpx
|
148 |
import huggingface_hub
|
149 |
+
from gradio.exceptions import ModelNotFoundError, TooManyRequestsError
|
150 |
model_url = f"https://huggingface.co/{model_name}"
|
151 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
152 |
print(f"Fetching model from: {model_url}")
|
153 |
|
154 |
+
headers = ({} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"})
|
155 |
response = httpx.request("GET", api_url, headers=headers)
|
156 |
if response.status_code != 200:
|
157 |
raise ModelNotFoundError(
|
158 |
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
|
159 |
)
|
160 |
+
p = response.json().get("pipeline_tag")
|
161 |
+
if p != "text-to-image": raise ModelNotFoundError(f"This model isn't for text-to-image or unsupported: {model_name}.")
|
162 |
headers["X-Wait-For-Model"] = "true"
|
163 |
client = huggingface_hub.InferenceClient(model=model_name, headers=headers,
|
164 |
token=hf_token, timeout=server_timeout)
|
|
|
167 |
fn = client.text_to_image
|
168 |
|
169 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
170 |
+
try:
|
171 |
+
data = fn(*data, **kwargs) # type: ignore
|
172 |
+
except huggingface_hub.utils.HfHubHTTPError as e:
|
173 |
+
if "429" in str(e):
|
174 |
+
raise TooManyRequestsError() from e
|
175 |
+
except Exception as e:
|
176 |
+
raise Exception() from e
|
177 |
+
return data
|
178 |
|
179 |
interface_info = {
|
180 |
"fn": query_huggingface_inference_endpoints,
|
|
|
190 |
global model_info_dict
|
191 |
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
192 |
try:
|
193 |
+
loaded_models[model_name] = load_from_model(model_name, hf_token=HF_TOKEN)
|
194 |
print(f"Loaded: {model_name}")
|
195 |
except Exception as e:
|
196 |
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
|
|
213 |
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
214 |
try:
|
215 |
client = InferenceClient(timeout=5)
|
216 |
+
status = client.get_model_status(model_name, token=HF_TOKEN)
|
217 |
if status is None or status.framework != "diffusers" or status.state not in ["Loadable", "Loaded"]:
|
218 |
print(f"Failed to load by API: {model_name}")
|
219 |
return None
|
220 |
else:
|
221 |
+
loaded_models[model_name] = InferenceClient(model_name, token=HF_TOKEN, timeout=server_timeout)
|
222 |
print(f"Loaded by API: {model_name}")
|
223 |
except Exception as e:
|
224 |
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
|
|
363 |
|
364 |
# https://huggingface.co/docs/api-inference/detailed_parameters
|
365 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
366 |
+
def infer_body(client: InferenceClient | gr.Interface | object, prompt: str, neg_prompt: str | None = None,
|
367 |
height: int | None = None, width: int | None = None,
|
368 |
+
steps: int | None = None, cfg: int | None = None, seed: int = -1):
|
369 |
png_path = "image.png"
|
370 |
kwargs = {}
|
371 |
if height is not None and height >= 256: kwargs["height"] = height
|
372 |
if width is not None and width >= 256: kwargs["width"] = width
|
373 |
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
|
374 |
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
375 |
+
if seed >= 0: kwargs["seed"] = seed
|
376 |
try:
|
377 |
if isinstance(client, InferenceClient):
|
378 |
+
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
|
379 |
elif isinstance(client, gr.Interface):
|
380 |
+
image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
|
381 |
else: return None
|
382 |
+
if isinstance(image, tuple): return None
|
383 |
image.save(png_path)
|
384 |
return str(Path(png_path).resolve())
|
385 |
except Exception as e:
|
386 |
print(e)
|
387 |
+
raise Exception() from e
|
388 |
|
389 |
|
390 |
async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
|
391 |
height: int | None = None, width: int | None = None,
|
392 |
+
steps: int | None = None, cfg: int | None = None, seed: int = -1,
|
393 |
save_path: str | None = None, timeout: float = inference_timeout):
|
394 |
import random
|
395 |
noise = ""
|
396 |
+
if seed < 0:
|
397 |
+
rand = random.randint(1, 500)
|
398 |
+
for i in range(rand):
|
399 |
+
noise += " "
|
400 |
model = load_model(model_name)
|
401 |
if not model: return None
|
402 |
task = asyncio.create_task(asyncio.to_thread(infer_body, model, f"{prompt} {noise}", neg_prompt,
|
403 |
+
height, width, steps, cfg, seed))
|
404 |
await asyncio.sleep(0)
|
405 |
try:
|
406 |
result = await asyncio.wait_for(task, timeout=timeout)
|
407 |
+
except asyncio.TimeoutError as e:
|
408 |
print(e)
|
409 |
print(f"Task timed out: {model_name}")
|
410 |
if not task.done(): task.cancel()
|
411 |
result = None
|
412 |
+
raise Exception(f"Task timed out: {model_name}") from e
|
413 |
+
except Exception as e:
|
414 |
+
print(e)
|
415 |
+
if not task.done(): task.cancel()
|
416 |
+
result = None
|
417 |
+
raise Exception() from e
|
418 |
if task.done() and result is not None:
|
419 |
with lock:
|
420 |
image = rename_image(result, model_name, save_path)
|
|
|
422 |
return None
|
423 |
|
424 |
|
425 |
+
# https://github.com/aio-libs/pytest-aiohttp/issues/8 # also AsyncInferenceClient is buggy.
|
426 |
def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
427 |
+
width: int | None = None, steps: int | None = None, cfg: int | None = None, seed: int = -1,
|
428 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
429 |
if model_name == 'NA':
|
430 |
return None
|
431 |
try:
|
432 |
+
loop = asyncio.get_running_loop()
|
433 |
+
except Exception:
|
434 |
loop = asyncio.new_event_loop()
|
435 |
+
try:
|
436 |
+
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
437 |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
438 |
+
steps, cfg, seed, save_path, inference_timeout))
|
439 |
except (Exception, asyncio.CancelledError) as e:
|
440 |
print(e)
|
441 |
+
print(f"Task aborted: {model_name}, Error: {e}")
|
442 |
result = None
|
443 |
+
raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
|
444 |
finally:
|
445 |
loop.close()
|
446 |
return result
|
447 |
|
448 |
|
449 |
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
450 |
+
width: int | None = None, steps: int | None = None, cfg: int | None = None, seed: int = -1,
|
451 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
452 |
import random
|
453 |
if model_name_dummy == 'NA':
|
|
|
455 |
random.seed()
|
456 |
model_name = random.choice(list(loaded_models.keys()))
|
457 |
try:
|
458 |
+
loop = asyncio.get_running_loop()
|
459 |
+
except Exception:
|
460 |
loop = asyncio.new_event_loop()
|
461 |
+
try:
|
462 |
+
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
463 |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
464 |
+
steps, cfg, seed, save_path, inference_timeout))
|
465 |
except (Exception, asyncio.CancelledError) as e:
|
466 |
print(e)
|
467 |
+
print(f"Task aborted: {model_name}, Error: {e}")
|
468 |
result = None
|
469 |
+
raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
|
470 |
finally:
|
471 |
loop.close()
|
472 |
return result
|
tagger/fl2sd3longcap.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
2 |
import spaces
|
|
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
import torch
|
@@ -8,9 +8,13 @@ import subprocess
|
|
8 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
-
fl_model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to(device).eval()
|
12 |
-
fl_processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def fl_modify_caption(caption: str) -> str:
|
16 |
"""
|
@@ -41,7 +45,7 @@ def fl_modify_caption(caption: str) -> str:
|
|
41 |
return modified_caption if modified_caption != caption else caption
|
42 |
|
43 |
|
44 |
-
@spaces.GPU
|
45 |
def fl_run_example(image):
|
46 |
task_prompt = "<DESCRIPTION>"
|
47 |
prompt = task_prompt + "Describe this image in great detail."
|
@@ -50,6 +54,7 @@ def fl_run_example(image):
|
|
50 |
if image.mode != "RGB":
|
51 |
image = image.convert("RGB")
|
52 |
|
|
|
53 |
inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to(device)
|
54 |
generated_ids = fl_model.generate(
|
55 |
input_ids=inputs["input_ids"],
|
@@ -57,6 +62,7 @@ def fl_run_example(image):
|
|
57 |
max_new_tokens=1024,
|
58 |
num_beams=3
|
59 |
)
|
|
|
60 |
generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
61 |
parsed_answer = fl_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
62 |
return fl_modify_caption(parsed_answer["<DESCRIPTION>"])
|
|
|
|
|
1 |
import spaces
|
2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
import re
|
4 |
from PIL import Image
|
5 |
import torch
|
|
|
8 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
11 |
|
12 |
+
try:
|
13 |
+
fl_model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to("cpu").eval()
|
14 |
+
fl_processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True)
|
15 |
+
except Exception as e:
|
16 |
+
print(e)
|
17 |
+
fl_model = fl_processor = None
|
18 |
|
19 |
def fl_modify_caption(caption: str) -> str:
|
20 |
"""
|
|
|
45 |
return modified_caption if modified_caption != caption else caption
|
46 |
|
47 |
|
48 |
+
@spaces.GPU(duration=30)
|
49 |
def fl_run_example(image):
|
50 |
task_prompt = "<DESCRIPTION>"
|
51 |
prompt = task_prompt + "Describe this image in great detail."
|
|
|
54 |
if image.mode != "RGB":
|
55 |
image = image.convert("RGB")
|
56 |
|
57 |
+
fl_model.to(device)
|
58 |
inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to(device)
|
59 |
generated_ids = fl_model.generate(
|
60 |
input_ids=inputs["input_ids"],
|
|
|
62 |
max_new_tokens=1024,
|
63 |
num_beams=3
|
64 |
)
|
65 |
+
fl_model.to("cpu")
|
66 |
generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
67 |
parsed_answer = fl_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
68 |
return fl_modify_caption(parsed_answer["<DESCRIPTION>"])
|
tagger/tagger.py
CHANGED
@@ -1,7 +1,7 @@
|
|
|
|
1 |
from PIL import Image
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
import spaces
|
5 |
from transformers import (
|
6 |
AutoImageProcessor,
|
7 |
AutoModelForImageClassification,
|
@@ -12,10 +12,15 @@ from pathlib import Path
|
|
12 |
WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
|
13 |
WD_MODEL_NAME = WD_MODEL_NAMES[0]
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
|
21 |
return (
|
@@ -506,7 +511,7 @@ def gen_prompt(rating: list[str], character: list[str], general: list[str]):
|
|
506 |
return ", ".join(all_tags)
|
507 |
|
508 |
|
509 |
-
@spaces.GPU()
|
510 |
def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
|
511 |
inputs = wd_processor.preprocess(image, return_tensors="pt")
|
512 |
|
@@ -514,9 +519,11 @@ def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_t
|
|
514 |
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
|
515 |
|
516 |
# get probabilities
|
|
|
517 |
results = {
|
518 |
wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
|
519 |
}
|
|
|
520 |
# rating, character, general
|
521 |
rating, character, general = postprocess_results(
|
522 |
results, general_threshold, character_threshold
|
|
|
1 |
+
import spaces
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
5 |
from transformers import (
|
6 |
AutoImageProcessor,
|
7 |
AutoModelForImageClassification,
|
|
|
12 |
WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
|
13 |
WD_MODEL_NAME = WD_MODEL_NAMES[0]
|
14 |
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
default_device = device
|
|
|
17 |
|
18 |
+
try:
|
19 |
+
wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True).to(default_device).eval()
|
20 |
+
wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
|
21 |
+
except Exception as e:
|
22 |
+
print(e)
|
23 |
+
wd_model = wd_processor = None
|
24 |
|
25 |
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
|
26 |
return (
|
|
|
511 |
return ", ".join(all_tags)
|
512 |
|
513 |
|
514 |
+
@spaces.GPU(duration=30)
|
515 |
def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
|
516 |
inputs = wd_processor.preprocess(image, return_tensors="pt")
|
517 |
|
|
|
519 |
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
|
520 |
|
521 |
# get probabilities
|
522 |
+
if device != default_device: wd_model.to(device=device)
|
523 |
results = {
|
524 |
wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
|
525 |
}
|
526 |
+
if device != default_device: wd_model.to(device=default_device)
|
527 |
# rating, character, general
|
528 |
rating, character, general = postprocess_results(
|
529 |
results, general_threshold, character_threshold
|