Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
# DiffuseCraft | |
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers, save_image_history, | |
get_vaes, enable_diffusers_model_detail, extract_exif_data, process_upscale, UPSCALER_KEYS, FACE_RESTORATION_MODELS, | |
preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt, | |
download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json, | |
get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL, | |
SCHEDULE_TYPE_OPTIONS, SCHEDULE_PREDICTION_TYPE_OPTIONS, preprocessor_tab, SDXL_TASK, TASK_MODEL_LIST, | |
PROMPT_W_OPTIONS, POST_PROCESSING_SAMPLER, IP_ADAPTERS_SD, IP_ADAPTERS_SDXL, DIFFUSERS_CONTROLNET_MODEL, | |
TASK_AND_PREPROCESSORS, update_task_options, change_preprocessor_choices, get_ti_choices, | |
update_textual_inversion, set_textual_inversion_prompt, create_mask_now) | |
# Translator | |
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple, | |
get_llm_formats, get_dolphin_model_format, get_dolphin_models, | |
get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt) | |
# Tagger | |
from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS | |
from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS, | |
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS) | |
from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt, | |
remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy, | |
translate_prompt, select_random_character) | |
from tagger.fl2sd3longcap import predict_tags_fl2_sd3 | |
def description_ui(): | |
gr.Markdown( | |
""" | |
## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner | |
(Image =>) Prompt => Upsampled longer prompt | |
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers). | |
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\ | |
, gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner) | |
""" | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 4096 | |
MIN_IMAGE_SIZE = 256 | |
css = """ | |
#container { margin: 0 auto; !important; } | |
#col-container { margin: 0 auto; !important; } | |
#result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; } | |
.lora { min-width: 480px; !important; } | |
.title { font-size: 3em; align-items: center; text-align: center; } | |
.info { align-items: center; text-align: center; } | |
.desc [src$='#float'] { float: right; margin: 20px; } | |
.image { margin: 0px auto; } | |
""" | |
with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo: | |
gr.Markdown("# Votepurchase Multiple Model", elem_classes="title") | |
state = gr.State(value={}) | |
with gr.Tab("Image Generator"): | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
prompt = gr.Text(label="Prompt", show_label=False, lines=1, max_lines=8, placeholder="Enter your prompt", container=False) | |
with gr.Row(): | |
run_button = gr.Button("Run", variant="primary", scale=5) | |
run_translate_button = gr.Button("Run with LLM Enhance", variant="secondary", scale=3) | |
auto_trans = gr.Checkbox(label="Auto translate to English", value=False, scale=2) | |
result = gr.Image(label="Result", elem_id="result", format="png", type="filepath", show_label=False, interactive=False, | |
show_download_button=True, show_share_button=False, container=True) | |
with gr.Accordion("History", open=False): | |
history_files = gr.Files(interactive=False, visible=False) | |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", format="png", interactive=False, show_share_button=False, | |
show_download_button=True) | |
history_clear_button = gr.Button(value="Clear History", variant="secondary") | |
history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, show_api=False) | |
with gr.Accordion("Advanced Settings", open=True): | |
task = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0]) | |
with gr.Tab("Generation Settings"): | |
with gr.Row(): | |
negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt", show_copy_button=True, | |
value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly") | |
with gr.Accordion("Prompt Settings", open=False): | |
with gr.Row(): | |
quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None", scale=3) | |
style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None", scale=3) | |
with gr.Row(): | |
recom_prompt = gr.Checkbox(label="Recommended prompt", value=True, scale=1) | |
prompt_syntax = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1]) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.", | |
choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0], | |
allow_custom_value=True, interactive=True, min_width=320) | |
model_info = gr.Markdown(elem_classes="info") | |
with gr.Column(scale=1): | |
model_detail = gr.Checkbox(label="Show detail of model in list", value=False) | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
gpu_duration = gr.Slider(label="GPU time duration (seconds)", minimum=5, maximum=240, value=59) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832 | |
height = gr.Slider(label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216 | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7) | |
guidance_rescale = gr.Slider(label="CFG rescale", value=0., step=0.01, minimum=0., maximum=1.5) | |
with gr.Row(): | |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28) | |
pag_scale = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale") | |
clip_skip = gr.Checkbox(value=True, label="Layer 2 Clip Skip") | |
free_u = gr.Checkbox(value=False, label="FreeU") | |
with gr.Row(): | |
sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler") | |
schedule_type = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0]) | |
schedule_prediction_type = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0]) | |
vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0]) | |
with gr.Accordion("Other Settings", open=False): | |
with gr.Accordion("Textual inversion", open=True): | |
active_textual_inversion = gr.Checkbox(value=False, label="Active Textual Inversion in prompt") | |
use_textual_inversion = gr.CheckboxGroup(choices=get_ti_choices(model_name.value) if active_textual_inversion.value else [], value=None, label="Use Textual Invertion in prompt") | |
with gr.Tab("LoRA"): | |
def lora_dropdown(label, visible=True): | |
return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320, visible=visible) | |
def lora_scale_slider(label, visible=True): | |
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label, visible=visible) | |
def lora_textbox(): | |
return gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
lora1 = lora_dropdown("LoRA 1") | |
lora1_wt = lora_scale_slider("LoRA 1: weight") | |
with gr.Row(): | |
lora1_info = lora_textbox() | |
lora1_copy = gr.Button(value="Copy example to prompt", visible=False) | |
lora1_md = gr.Markdown(value="", visible=False) | |
with gr.Column(): | |
with gr.Row(): | |
lora2 = lora_dropdown("LoRA 2") | |
lora2_wt = lora_scale_slider("LoRA 2: weight") | |
with gr.Row(): | |
lora2_info = lora_textbox() | |
lora2_copy = gr.Button(value="Copy example to prompt", visible=False) | |
lora2_md = gr.Markdown(value="", visible=False) | |
with gr.Column(): | |
with gr.Row(): | |
lora3 = lora_dropdown("LoRA 3") | |
lora3_wt = lora_scale_slider("LoRA 3: weight") | |
with gr.Row(): | |
lora3_info = lora_textbox() | |
lora3_copy = gr.Button(value="Copy example to prompt", visible=False) | |
lora3_md = gr.Markdown(value="", visible=False) | |
with gr.Column(): | |
with gr.Row(): | |
lora4 = lora_dropdown("LoRA 4") | |
lora4_wt = lora_scale_slider("LoRA 4: weight") | |
with gr.Row(): | |
lora4_info = lora_textbox() | |
lora4_copy = gr.Button(value="Copy example to prompt", visible=False) | |
lora4_md = gr.Markdown(value="", visible=False) | |
with gr.Column(): | |
with gr.Row(): | |
lora5 = lora_dropdown("LoRA 5") | |
lora5_wt = lora_scale_slider("LoRA 5: weight") | |
with gr.Row(): | |
lora5_info = lora_textbox() | |
lora5_copy = gr.Button(value="Copy example to prompt", visible=False) | |
lora5_md = gr.Markdown(value="", visible=False) | |
with gr.Column(): | |
with gr.Row(): | |
lora6 = lora_dropdown("LoRA 6", visible=False) | |
lora6_wt = lora_scale_slider("LoRA 6: weight", visible=False) | |
with gr.Row(): | |
lora6_info = lora_textbox() | |
lora6_copy = gr.Button(value="Copy example to prompt", visible=False) | |
lora6_md = gr.Markdown(value="", visible=False) | |
with gr.Column(): | |
with gr.Row(): | |
lora7 = lora_dropdown("LoRA 7", visible=False) | |
lora7_wt = lora_scale_slider("LoRA 7: weight", visible=False) | |
with gr.Row(): | |
lora7_info = lora_textbox() | |
lora7_copy = gr.Button(value="Copy example to prompt", visible=False) | |
lora7_md = gr.Markdown(value="", visible=False) | |
with gr.Accordion("From URL", open=True, visible=True): | |
with gr.Row(): | |
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"]) | |
lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated") | |
lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime") | |
with gr.Row(): | |
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1) | |
lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True) | |
lora_search_civitai_user = gr.Textbox(label="Username", lines=1) | |
lora_search_civitai_submit = gr.Button("Search on Civitai") | |
with gr.Row(): | |
lora_search_civitai_json = gr.JSON(value={}, visible=False) | |
lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc") | |
with gr.Accordion("Select from Gallery", open=False): | |
lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False) | |
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False) | |
lora_download_url = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1) | |
lora_download = gr.Button("Get and set LoRA and apply to prompt") | |
with gr.Tab("ControlNet / Img2img / Inpaint"): | |
task_sel = gr.Radio(label="Task Selector", choices=SDXL_TASK, value=TASK_MODEL_LIST[0]) | |
with gr.Row(): | |
with gr.Column(): | |
#image_control = gr.Image(label="Image ControlNet / Inpaint / Img2img", type="filepath", height=384, sources=["upload", "clipboard", "webcam"], show_share_button=False) | |
image_control = gr.ImageEditor(label="Image ControlNet / Inpaint / Img2img", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB', | |
show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), elem_classes="image") | |
result_to_ic_button = gr.Button("Get image from generated result") | |
image_mask = gr.Image(label="Image Mask", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False, elem_classes="image") | |
with gr.Row(): | |
strength = gr.Slider(minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength", | |
info="This option adjusts the level of changes for img2img, repaint and inpaint.") | |
image_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution", | |
info="The maximum proportional size of the generated image based on the uploaded image.") | |
with gr.Row(): | |
controlnet_model = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0]) | |
control_net_output_scaling = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet") | |
control_net_start_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)") | |
control_net_stop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)") | |
with gr.Row(): | |
preprocessor_name = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"]) | |
preprocess_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution") | |
low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold") | |
high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold") | |
with gr.Row(): | |
value_threshold = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold") | |
distance_threshold = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold") | |
recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction") | |
tile_blur_sigma = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma") | |
with gr.Tab("IP-Adapter"): | |
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL))) | |
MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"] | |
with gr.Accordion("IP-Adapter 1", open=True, visible=True): | |
with gr.Row(): | |
with gr.Column(): | |
#image_ip1 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False) | |
image_ip1 = gr.ImageEditor(label="IP Image", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB', | |
show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), elem_classes="image") | |
result_to_ip1_button = gr.Button("Get image from generated result") | |
mask_ip1 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False, elem_classes="image") | |
with gr.Row(): | |
model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS) | |
mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS) | |
scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") | |
with gr.Accordion("IP-Adapter 2", open=True, visible=True): | |
with gr.Row(): | |
with gr.Column(): | |
#image_ip2 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False) | |
image_ip2 = gr.ImageEditor(label="IP Image", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB', | |
show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), elem_classes="image") | |
result_to_ip2_button = gr.Button("Get image from generated result") | |
mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False, elem_classes="image") | |
with gr.Row(): | |
model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS) | |
mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS) | |
scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") | |
with gr.Tab("Inpaint Mask Maker"): | |
with gr.Row(): | |
with gr.Column(): | |
image_base = gr.ImageEditor(sources=["upload", "clipboard", "webcam"], | |
brush=gr.Brush(default_size="32", color_mode="fixed", colors=["rgba(0, 0, 0, 1)", "rgba(0, 0, 0, 0.1)", "rgba(255, 255, 255, 0.1)"]), | |
eraser=gr.Eraser(default_size="32"), show_share_button=False, show_fullscreen_button=False, | |
canvas_size=(384, 384), width=384, height=512, elem_classes="image") | |
result_to_cm_button = gr.Button("Get image from generated result") | |
invert_mask = gr.Checkbox(value=False, label="Invert mask") | |
cm_btn = gr.Button("Create mask") | |
with gr.Column(): | |
img_source = gr.Image(interactive=False, height=384, show_share_button=False, elem_classes="image") | |
img_result = gr.Image(label="Mask image", show_label=True, interactive=False, height=384, show_share_button=False, elem_classes="image") | |
cm_btn_send = gr.Button("Send to ControlNet / Img2img / Inpaint") | |
cm_btn_send_ip1 = gr.Button("Send to IP-Adapter 1") | |
cm_btn_send_ip2 = gr.Button("Send to IP-Adapter 2") | |
cm_btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result], show_api=False) | |
def send_img(img_source, img_result): | |
return img_source, img_result | |
cm_btn_send.click(send_img, [img_source, img_result], [image_control, image_mask], queue=False, show_api=False) | |
cm_btn_send_ip1.click(send_img, [img_source, img_result], [image_ip1, mask_ip1], queue=False, show_api=False) | |
cm_btn_send_ip2.click(send_img, [img_source, img_result], [image_ip2, mask_ip2], queue=False, show_api=False) | |
with gr.Tab("Hires fix / Detailfix / Face restoration"): | |
with gr.Accordion("Hires fix", open=True): | |
with gr.Row(): | |
upscaler_model_path = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0]) | |
upscaler_increases_size = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by") | |
upscaler_tile_size = gr.Slider(minimum=0, maximum=512, step=16, value=0, label="Upscaler Tile Size", info="0 = no tiling") | |
upscaler_tile_overlap = gr.Slider(minimum=0, maximum=48, step=1, value=8, label="Upscaler Tile Overlap") | |
with gr.Row(): | |
hires_steps = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps") | |
hires_denoising_strength = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength") | |
hires_sampler = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) | |
hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS | |
hires_schedule_type = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0]) | |
hires_guidance_scale = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used") | |
with gr.Row(): | |
hires_prompt = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3) | |
hires_negative_prompt = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3) | |
with gr.Accordion("Detail fix", open=True): | |
with gr.Row(): | |
# Adetailer Inpaint Only | |
adetailer_inpaint_only = gr.Checkbox(label="Inpaint only", value=True) | |
# Adetailer Verbose | |
adetailer_verbose = gr.Checkbox(label="Verbose", value=False) | |
# Adetailer Sampler | |
adetailer_sampler = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) | |
with gr.Accordion("Detailfix A", open=True, visible=True): | |
# Adetailer A | |
adetailer_active_a = gr.Checkbox(label="Enable Adetailer A", value=False) | |
prompt_ad_a = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) | |
negative_prompt_ad_a = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) | |
with gr.Row(): | |
strength_ad_a = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) | |
face_detector_ad_a = gr.Checkbox(label="Face detector", value=False) | |
person_detector_ad_a = gr.Checkbox(label="Person detector", value=True) | |
hand_detector_ad_a = gr.Checkbox(label="Hand detector", value=False) | |
with gr.Row(): | |
mask_dilation_a = gr.Number(label="Mask dilation:", value=4, minimum=1) | |
mask_blur_a = gr.Number(label="Mask blur:", value=4, minimum=1) | |
mask_padding_a = gr.Number(label="Mask padding:", value=32, minimum=1) | |
with gr.Accordion("Detailfix B", open=True, visible=True): | |
# Adetailer B | |
adetailer_active_b = gr.Checkbox(label="Enable Adetailer B", value=False) | |
prompt_ad_b = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) | |
negative_prompt_ad_b = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) | |
with gr.Row(): | |
strength_ad_b = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) | |
face_detector_ad_b = gr.Checkbox(label="Face detector", value=False) | |
person_detector_ad_b = gr.Checkbox(label="Person detector", value=True) | |
hand_detector_ad_b = gr.Checkbox(label="Hand detector", value=False) | |
with gr.Row(): | |
mask_dilation_b = gr.Number(label="Mask dilation:", value=4, minimum=1) | |
mask_blur_b = gr.Number(label="Mask blur:", value=4, minimum=1) | |
mask_padding_b = gr.Number(label="Mask padding:", value=32, minimum=1) | |
with gr.Accordion("Face restoration", open=True, visible=True): | |
face_rest_options = [None] + FACE_RESTORATION_MODELS | |
with gr.Row(): | |
face_restoration_model = gr.Dropdown(label="Face restoration model", choices=face_rest_options, value=face_rest_options[0]) | |
face_restoration_visibility = gr.Slider(minimum=0., maximum=1., step=0.001, value=1., label="Visibility") | |
face_restoration_weight = gr.Slider(minimum=0., maximum=1., step=0.001, value=.5, label="Weight", info="(0 = maximum effect, 1 = minimum effect)") | |
with gr.Tab("Translation Settings"): | |
chatbot = gr.Chatbot(render_markdown=False, visible=False) # component for auto-translation | |
chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model") | |
chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info") | |
chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format") | |
with gr.Row(): | |
chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens") | |
chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") | |
chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k") | |
chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty") | |
chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message") | |
examples = gr.Examples( | |
examples = [ | |
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"], | |
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"], | |
["kafuu chino, 1girl, solo"], | |
["1girl"], | |
["beautiful sunset"], | |
], | |
inputs=[prompt], | |
cache_examples=False, | |
) | |
model_name.change(update_task_options, [model_name, task], [task], queue=False, show_api=False)\ | |
.success(update_task_options, [model_name, task_sel], [task_sel], queue=False, show_api=False) | |
task_sel.select(lambda x: x, [task_sel], [task], queue=False, show_api=False) | |
task.change(change_preprocessor_choices, [task], [preprocessor_name], queue=False, show_api=False)\ | |
.success(lambda x: x, [task], [task_sel], queue=False, show_api=False) | |
active_textual_inversion.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False) | |
model_name.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False) | |
use_textual_inversion.change(set_textual_inversion_prompt, [use_textual_inversion, prompt, negative_prompt, prompt_syntax], [prompt, negative_prompt]) | |
result_to_cm_button.click(lambda x: x, [result], [image_base], queue=False, show_api=False) | |
result_to_ic_button.click(lambda x: x, [result], [image_control], queue=False, show_api=False) | |
result_to_ip1_button.click(lambda x: x, [result], [image_ip1], queue=False, show_api=False) | |
result_to_ip2_button.click(lambda x: x, [result], [image_ip2], queue=False, show_api=False) | |
gr.on( #lambda x: None, inputs=None, outputs=result).then( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, | |
guidance_scale, num_inference_steps, model_name, | |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, | |
lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax, | |
sampler, vae_model, schedule_type, schedule_prediction_type, | |
clip_skip, pag_scale, free_u, guidance_rescale, | |
image_control, image_mask, strength, image_resolution, | |
controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold, | |
preprocessor_name, preprocess_resolution, low_threshold, high_threshold, | |
value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma, | |
image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1, | |
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, | |
upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength, | |
hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt, | |
adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, | |
prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, | |
mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, | |
face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b, | |
active_textual_inversion, face_restoration_model, face_restoration_visibility, face_restoration_weight, gpu_duration, auto_trans, recom_prompt], | |
outputs=[result], | |
queue=True, | |
show_progress="full", | |
show_api=True, | |
) | |
gr.on( #lambda x: None, inputs=None, outputs=result).then( | |
triggers=[run_translate_button.click], | |
fn=_infer, # dummy fn for api | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, | |
guidance_scale, num_inference_steps, model_name, | |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, | |
lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax, | |
sampler, vae_model, schedule_type, schedule_prediction_type, | |
clip_skip, pag_scale, free_u, guidance_rescale, | |
image_control, image_mask, strength, image_resolution, | |
controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold, | |
preprocessor_name, preprocess_resolution, low_threshold, high_threshold, | |
value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma, | |
image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1, | |
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, | |
upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength, | |
hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt, | |
adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, | |
prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, | |
mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, | |
face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b, | |
active_textual_inversion, face_restoration_model, face_restoration_visibility, face_restoration_weight, gpu_duration, auto_trans, recom_prompt], | |
outputs=[result], | |
queue=False, | |
show_api=True, | |
api_name="infer_translate", | |
).success( | |
fn=dolphin_respond_auto, | |
inputs=[prompt, chatbot, chat_model, chat_sysmsg, chat_tokens, chat_temperature, chat_topp, chat_topk, chat_rp, state], | |
outputs=[chatbot, result, prompt], | |
queue=True, | |
show_progress="full", | |
show_api=False, | |
).success( | |
fn=dolphin_parse_simple, | |
inputs=[prompt, chatbot, state], | |
outputs=[prompt], | |
queue=False, | |
show_api=False, | |
).success( | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, | |
guidance_scale, num_inference_steps, model_name, | |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, | |
lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax, | |
sampler, vae_model, schedule_type, schedule_prediction_type, | |
clip_skip, pag_scale, free_u, guidance_rescale, | |
image_control, image_mask, strength, image_resolution, | |
controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold, | |
preprocessor_name, preprocess_resolution, low_threshold, high_threshold, | |
value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma, | |
image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1, | |
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, | |
upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength, | |
hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt, | |
adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, | |
prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, | |
mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, | |
face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b, | |
active_textual_inversion, face_restoration_model, face_restoration_visibility, face_restoration_weight, gpu_duration, auto_trans, recom_prompt], | |
outputs=[result], | |
queue=True, | |
show_progress="full", | |
show_api=False, | |
).success(lambda: None, None, chatbot, queue=False, show_api=False)\ | |
.success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api | |
result.change(save_image_history, [result, history_gallery, history_files, model_name], [history_gallery, history_files], queue=False, show_api=False) | |
gr.on( | |
triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change, | |
lora4.change, lora4_wt.change, lora5.change, lora5_wt.change, lora6.change, lora6_wt.change, lora7.change, lora7_wt.change, prompt_syntax.change], | |
fn=update_loras, | |
inputs=[prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt], | |
outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md, | |
lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md, | |
lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md, | |
lora6, lora6_wt, lora6_info, lora6_copy, lora6_md, lora7, lora7_wt, lora7_info, lora7_copy, lora7_md], | |
queue=False, | |
trigger_mode="once", | |
show_api=False, | |
) | |
lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False) | |
lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False) | |
lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False) | |
lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False) | |
lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False) | |
lora6_copy.click(apply_lora_prompt, [prompt, lora6_info], [prompt], queue=False, show_api=False) | |
lora7_copy.click(apply_lora_prompt, [prompt, lora7_info], [prompt], queue=False, show_api=False) | |
gr.on( | |
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit], | |
fn=search_civitai_lora, | |
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery], | |
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery], | |
scroll_to_output=True, | |
queue=True, | |
show_api=False, | |
) | |
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api | |
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False) | |
gr.on( | |
triggers=[lora_download.click, lora_download_url.submit], | |
fn=download_my_lora, | |
inputs=[lora_download_url, lora1, lora2, lora3, lora4, lora5, lora6, lora7], | |
outputs=[lora1, lora2, lora3, lora4, lora5, lora6, lora7], | |
scroll_to_output=True, | |
queue=True, | |
show_api=False, | |
) | |
lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False) | |
#recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False) | |
gr.on( | |
triggers=[quality_selector.change, style_selector.change], | |
fn=process_style_prompt, | |
inputs=[prompt, negative_prompt, style_selector, quality_selector], | |
outputs=[prompt, negative_prompt], | |
queue=False, | |
trigger_mode="once", | |
show_api=False, | |
) | |
model_detail.change(enable_diffusers_model_detail, [model_detail, model_name, state], [model_detail, model_name, state], queue=False, show_api=False) | |
model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False) | |
chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\ | |
.success(lambda: None, None, chatbot, queue=False, show_api=False) | |
chat_format.change(select_dolphin_format, [chat_format, state], [chat_format, state], queue=False, show_api=False)\ | |
.success(lambda: None, None, chatbot, queue=False, show_api=False) | |
# Tagger | |
with gr.Tab("Tags Transformer with Tagger"): | |
with gr.Column(): | |
with gr.Group(): | |
input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256) | |
with gr.Accordion(label="Advanced options", open=False): | |
general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True) | |
character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True) | |
input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru") | |
recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True) | |
image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"]) | |
keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all") | |
generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary") | |
with gr.Group(): | |
with gr.Row(): | |
input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku") | |
input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid") | |
random_character = gr.Button(value="Random character 🎲", size="sm") | |
input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="") | |
input_tags_to_copy = gr.Textbox(value="", visible=False) | |
with gr.Row(): | |
copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False) | |
copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False) | |
translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary") | |
tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False) | |
input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit") | |
with gr.Accordion(label="Advanced options", open=False): | |
input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square") | |
input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long") | |
input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax") | |
input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored") | |
model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0]) | |
dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False) | |
recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False) | |
recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False) | |
generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary") | |
with gr.Row(): | |
with gr.Group(): | |
output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True) | |
with gr.Row(): | |
copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False) | |
copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False) | |
with gr.Group(): | |
output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True) | |
with gr.Row(): | |
copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False) | |
copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False) | |
random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character], queue=False, show_api=False) | |
translate_input_prompt_button.click(translate_prompt, [input_general], [input_general], queue=False, show_api=False) | |
translate_input_prompt_button.click(translate_prompt, [input_character], [input_character], queue=False, show_api=False) | |
translate_input_prompt_button.click(translate_prompt, [input_copyright], [input_copyright], queue=False, show_api=False) | |
generate_from_image_btn.click( | |
lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, show_api=False, | |
).success( | |
predict_tags_wd, | |
[input_image, input_general, image_algorithms, general_threshold, character_threshold], | |
[input_copyright, input_character, input_general, copy_input_btn], | |
show_api=False, | |
).success( | |
predict_tags_fl2_sd3, [input_image, input_general, image_algorithms], [input_general], show_api=False, | |
).success( | |
remove_specific_prompt, [input_general, keep_tags], [input_general], queue=False, show_api=False, | |
).success( | |
convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False, | |
).success( | |
insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False, | |
).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False) | |
copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\ | |
.success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False) | |
copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\ | |
.success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False) | |
generate_btn.click( | |
v2_upsampling_prompt, | |
[model_name, input_copyright, input_character, input_general, | |
input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags], | |
[output_text], | |
show_api=False, | |
).success( | |
convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False, | |
).success( | |
insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False, | |
).success( | |
insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False, | |
).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)), | |
None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False) | |
copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False) | |
copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False) | |
copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False) | |
copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False) | |
with gr.Tab("PNG Info"): | |
with gr.Row(): | |
with gr.Column(): | |
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"]) | |
with gr.Column(): | |
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99) | |
image_metadata.change( | |
fn=extract_exif_data, | |
inputs=[image_metadata], | |
outputs=[result_metadata], | |
) | |
with gr.Tab("Upscaler"): | |
with gr.Row(): | |
with gr.Column(): | |
USCALER_TAB_KEYS = [name for name in UPSCALER_KEYS[9:]] | |
image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"]) | |
upscaler_tab = gr.Dropdown(label="Upscaler", choices=USCALER_TAB_KEYS, value=USCALER_TAB_KEYS[5]) | |
upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by") | |
generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary") | |
with gr.Column(): | |
result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png") | |
generate_button_up_tab.click( | |
fn=process_upscale, | |
inputs=[image_up_tab, upscaler_tab, upscaler_size_tab], | |
outputs=[result_up_tab], | |
) | |
with gr.Tab("Preprocessor", render=True): | |
preprocessor_tab() | |
gr.LoginButton() | |
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)") | |
demo.queue() | |
demo.launch(show_error=True, debug=True) | |