Spaces:
Runtime error
Runtime error
Upload 24 files
Browse files- README.md +14 -12
- app.py +373 -0
- dc.py +1328 -0
- env.py +129 -0
- ja_to_danbooru/character_series_dict.json +0 -0
- ja_to_danbooru/danbooru_tagtype_dict.json +0 -0
- ja_to_danbooru/ja_danbooru_dict.json +0 -0
- ja_to_danbooru/ja_to_danbooru.py +87 -0
- llmdolphin.py +884 -0
- lora_dict.json +0 -0
- model_dict.json +0 -0
- modutils.py +1225 -0
- packages.txt +1 -0
- pre-requirements.txt +1 -0
- requirements.txt +24 -0
- tagger/character_series_dict.csv +0 -0
- tagger/danbooru_e621.csv +0 -0
- tagger/fl2sd3longcap.py +78 -0
- tagger/output.py +16 -0
- tagger/tag_group.csv +0 -0
- tagger/tagger.py +556 -0
- tagger/utils.py +50 -0
- tagger/v2.py +260 -0
- textual_inversion_dict.json +74 -0
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
---
|
2 |
-
title: Votepurchase
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Votepurchase Multiple Model (SD1.5/SDXL Text-to-Image)
|
3 |
+
emoji: πΌπΌοΈπ¦
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.41.0
|
8 |
+
app_file: app.py
|
9 |
+
license: mit
|
10 |
+
short_description: Text-to-Image
|
11 |
+
pinned: true
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# DiffuseCraft
|
6 |
+
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers,
|
7 |
+
get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail,
|
8 |
+
get_t2i_model_info, get_all_lora_tupled_list, update_loras,
|
9 |
+
apply_lora_prompt, download_my_lora, search_civitai_lora,
|
10 |
+
select_civitai_lora, search_civitai_lora_json,
|
11 |
+
preset_quality, preset_styles, process_style_prompt)
|
12 |
+
# Translator
|
13 |
+
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
|
14 |
+
get_llm_formats, get_dolphin_model_format, get_dolphin_models,
|
15 |
+
get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt)
|
16 |
+
# Tagger
|
17 |
+
from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS
|
18 |
+
from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS,
|
19 |
+
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
|
20 |
+
from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
|
21 |
+
remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy,
|
22 |
+
translate_prompt, select_random_character)
|
23 |
+
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
24 |
+
def description_ui():
|
25 |
+
gr.Markdown(
|
26 |
+
"""
|
27 |
+
## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner
|
28 |
+
(Image =>) Prompt => Upsampled longer prompt
|
29 |
+
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with π€ transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
|
30 |
+
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\
|
31 |
+
, gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner)
|
32 |
+
"""
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
MAX_SEED = np.iinfo(np.int32).max
|
37 |
+
MAX_IMAGE_SIZE = 1216
|
38 |
+
|
39 |
+
css = """
|
40 |
+
#container { margin: 0 auto; !important; }
|
41 |
+
#col-container { margin: 0 auto; !important; }
|
42 |
+
#result { display: inline-block; max-width: 520px; max-height: 520px; width: 520px; height: 520px; align: center; margin: 0px auto; !important; }
|
43 |
+
.lora { display: inline-block; min-width: 480px; !important; }
|
44 |
+
#model-info { text-align: center; !important; }
|
45 |
+
"""
|
46 |
+
|
47 |
+
with gr.Blocks(css=css, fill_width=True, elem_id="container") as demo:
|
48 |
+
with gr.Tab("Image Generator"):
|
49 |
+
with gr.Column(elem_id="col-container"):
|
50 |
+
with gr.Row():
|
51 |
+
prompt = gr.Text(label="Prompt", show_label=False, lines=1, max_lines=8, placeholder="Enter your prompt", container=False)
|
52 |
+
|
53 |
+
with gr.Row():
|
54 |
+
run_button = gr.Button("Run")
|
55 |
+
run_translate_button = gr.Button("Translate")
|
56 |
+
|
57 |
+
result = gr.Image(label="Result", elem_id="result", show_label=False, interactive=False,
|
58 |
+
show_download_button=True, show_share_button=False, container=True)
|
59 |
+
|
60 |
+
with gr.Accordion("Advanced Settings", open=False):
|
61 |
+
with gr.Row():
|
62 |
+
negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt",
|
63 |
+
value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly")
|
64 |
+
|
65 |
+
with gr.Row():
|
66 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
67 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
68 |
+
|
69 |
+
with gr.Row():
|
70 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
|
71 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
|
72 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
|
73 |
+
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column(scale=4):
|
77 |
+
model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
|
78 |
+
choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
|
79 |
+
allow_custom_value=True, interactive=True, min_width=320)
|
80 |
+
model_info = gr.Markdown(elem_id="model-info")
|
81 |
+
with gr.Column(scale=1):
|
82 |
+
model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
|
83 |
+
|
84 |
+
with gr.Row():
|
85 |
+
sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler a")
|
86 |
+
vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])
|
87 |
+
|
88 |
+
with gr.Accordion("LoRA", open=True, visible=True):
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column():
|
91 |
+
with gr.Row():
|
92 |
+
lora1 = gr.Dropdown(label="LoRA 1", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
|
93 |
+
lora1_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 1: weight")
|
94 |
+
with gr.Row():
|
95 |
+
lora1_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
|
96 |
+
lora1_copy = gr.Button(value="Copy example to prompt", visible=False)
|
97 |
+
lora1_md = gr.Markdown(value="", visible=False)
|
98 |
+
with gr.Column():
|
99 |
+
with gr.Row():
|
100 |
+
lora2 = gr.Dropdown(label="LoRA 2", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
|
101 |
+
lora2_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 2: weight")
|
102 |
+
with gr.Row():
|
103 |
+
lora2_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
|
104 |
+
lora2_copy = gr.Button(value="Copy example to prompt", visible=False)
|
105 |
+
lora2_md = gr.Markdown(value="", visible=False)
|
106 |
+
with gr.Column():
|
107 |
+
with gr.Row():
|
108 |
+
lora3 = gr.Dropdown(label="LoRA 3", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
|
109 |
+
lora3_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 3: weight")
|
110 |
+
with gr.Row():
|
111 |
+
lora3_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
|
112 |
+
lora3_copy = gr.Button(value="Copy example to prompt", visible=False)
|
113 |
+
lora3_md = gr.Markdown(value="", visible=False)
|
114 |
+
with gr.Column():
|
115 |
+
with gr.Row():
|
116 |
+
lora4 = gr.Dropdown(label="LoRA 4", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
|
117 |
+
lora4_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 4: weight")
|
118 |
+
with gr.Row():
|
119 |
+
lora4_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
|
120 |
+
lora4_copy = gr.Button(value="Copy example to prompt", visible=False)
|
121 |
+
lora4_md = gr.Markdown(value="", visible=False)
|
122 |
+
with gr.Column():
|
123 |
+
with gr.Row():
|
124 |
+
lora5 = gr.Dropdown(label="LoRA 5", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
|
125 |
+
lora5_wt = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA 5: weight")
|
126 |
+
with gr.Row():
|
127 |
+
lora5_info = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
|
128 |
+
lora5_copy = gr.Button(value="Copy example to prompt", visible=False)
|
129 |
+
lora5_md = gr.Markdown(value="", visible=False)
|
130 |
+
with gr.Accordion("From URL", open=True, visible=True):
|
131 |
+
with gr.Row():
|
132 |
+
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
|
133 |
+
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Pony", "SD 1.5", "SDXL 1.0"], value=["Pony", "SDXL 1.0"])
|
134 |
+
lora_search_civitai_submit = gr.Button("Search on Civitai")
|
135 |
+
with gr.Row():
|
136 |
+
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
137 |
+
lora_search_civitai_json = gr.JSON(value={}, visible=False)
|
138 |
+
lora_search_civitai_desc = gr.Markdown(value="", visible=False)
|
139 |
+
lora_download_url = gr.Textbox(label="URL", placeholder="http://...my_lora_url.safetensors", lines=1)
|
140 |
+
lora_download = gr.Button("Get and set LoRA and apply to prompt")
|
141 |
+
|
142 |
+
with gr.Row():
|
143 |
+
recom_prompt = gr.Checkbox(label="Recommended prompt", value=True)
|
144 |
+
quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None")
|
145 |
+
style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None")
|
146 |
+
|
147 |
+
with gr.Accordion("Translation Settings", open=False):
|
148 |
+
chatbot = gr.Chatbot(likeable=False, render_markdown=False, visible=False) # component for auto-translation
|
149 |
+
chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model")
|
150 |
+
chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info")
|
151 |
+
chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format")
|
152 |
+
with gr.Row():
|
153 |
+
chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
154 |
+
chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
155 |
+
chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
156 |
+
chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
|
157 |
+
chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
|
158 |
+
chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")
|
159 |
+
|
160 |
+
examples = gr.Examples(
|
161 |
+
examples = [
|
162 |
+
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
|
163 |
+
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
|
164 |
+
["kafuu chino, 1girl, solo"],
|
165 |
+
["1girl"],
|
166 |
+
["beautiful sunset"],
|
167 |
+
],
|
168 |
+
inputs=[prompt],
|
169 |
+
)
|
170 |
+
|
171 |
+
gr.on( #lambda x: None, inputs=None, outputs=result).then(
|
172 |
+
triggers=[run_button.click, prompt.submit],
|
173 |
+
fn=infer,
|
174 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
175 |
+
guidance_scale, num_inference_steps, model_name,
|
176 |
+
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
177 |
+
sampler, vae_model],
|
178 |
+
outputs=[result],
|
179 |
+
queue=True,
|
180 |
+
show_progress="full",
|
181 |
+
show_api=True,
|
182 |
+
)
|
183 |
+
|
184 |
+
gr.on( #lambda x: None, inputs=None, outputs=result).then(
|
185 |
+
triggers=[run_translate_button.click],
|
186 |
+
fn=_infer, # dummy fn for api
|
187 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
188 |
+
guidance_scale, num_inference_steps, model_name,
|
189 |
+
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
190 |
+
sampler, vae_model],
|
191 |
+
outputs=[result],
|
192 |
+
queue=False,
|
193 |
+
show_api=True,
|
194 |
+
api_name="infer_translate",
|
195 |
+
).success(
|
196 |
+
fn=dolphin_respond_auto,
|
197 |
+
inputs=[prompt, chatbot],
|
198 |
+
outputs=[chatbot],
|
199 |
+
queue=True,
|
200 |
+
show_progress="full",
|
201 |
+
show_api=False,
|
202 |
+
).success(
|
203 |
+
fn=dolphin_parse_simple,
|
204 |
+
inputs=[prompt, chatbot],
|
205 |
+
outputs=[prompt],
|
206 |
+
queue=False,
|
207 |
+
show_api=False,
|
208 |
+
).success(
|
209 |
+
fn=infer,
|
210 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
211 |
+
guidance_scale, num_inference_steps, model_name,
|
212 |
+
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
213 |
+
sampler, vae_model],
|
214 |
+
outputs=[result],
|
215 |
+
queue=True,
|
216 |
+
show_progress="full",
|
217 |
+
show_api=False,
|
218 |
+
).success(lambda: None, None, chatbot, queue=False, show_api=False)\
|
219 |
+
.success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api
|
220 |
+
|
221 |
+
gr.on(
|
222 |
+
triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change,
|
223 |
+
lora4.change, lora4_wt.change, lora5.change, lora5_wt.change],
|
224 |
+
fn=update_loras,
|
225 |
+
inputs=[prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt],
|
226 |
+
outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md,
|
227 |
+
lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md,
|
228 |
+
lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md],
|
229 |
+
queue=False,
|
230 |
+
trigger_mode="once",
|
231 |
+
show_api=False,
|
232 |
+
)
|
233 |
+
lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False)
|
234 |
+
lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False)
|
235 |
+
lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False)
|
236 |
+
lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False)
|
237 |
+
lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
|
238 |
+
|
239 |
+
gr.on(
|
240 |
+
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
|
241 |
+
fn=search_civitai_lora,
|
242 |
+
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel],
|
243 |
+
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query],
|
244 |
+
scroll_to_output=True,
|
245 |
+
queue=True,
|
246 |
+
show_api=False,
|
247 |
+
)
|
248 |
+
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
|
249 |
+
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
|
250 |
+
gr.on(
|
251 |
+
triggers=[lora_download.click, lora_download_url.submit],
|
252 |
+
fn=download_my_lora,
|
253 |
+
inputs=[lora_download_url,lora1, lora2, lora3, lora4, lora5],
|
254 |
+
outputs=[lora1, lora2, lora3, lora4, lora5],
|
255 |
+
scroll_to_output=True,
|
256 |
+
queue=True,
|
257 |
+
show_api=False,
|
258 |
+
)
|
259 |
+
|
260 |
+
recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
|
261 |
+
gr.on(
|
262 |
+
triggers=[quality_selector.change, style_selector.change],
|
263 |
+
fn=process_style_prompt,
|
264 |
+
inputs=[prompt, negative_prompt, style_selector, quality_selector],
|
265 |
+
outputs=[prompt, negative_prompt],
|
266 |
+
queue=False,
|
267 |
+
trigger_mode="once",
|
268 |
+
)
|
269 |
+
|
270 |
+
model_detail.change(enable_diffusers_model_detail, [model_detail, model_name], [model_detail, model_name], queue=False, show_api=False)
|
271 |
+
model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
|
272 |
+
|
273 |
+
chat_model.change(select_dolphin_model, [chat_model], [chat_model, chat_format, chat_model_info], queue=True, show_progress="full", show_api=False)\
|
274 |
+
.success(lambda: None, None, chatbot, queue=False, show_api=False)
|
275 |
+
chat_format.change(select_dolphin_format, [chat_format], [chat_format], queue=False, show_api=False)\
|
276 |
+
.success(lambda: None, None, chatbot, queue=False, show_api=False)
|
277 |
+
|
278 |
+
# Tagger
|
279 |
+
with gr.Tab("Tags Transformer with Tagger"):
|
280 |
+
with gr.Column():
|
281 |
+
with gr.Group():
|
282 |
+
input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
|
283 |
+
with gr.Accordion(label="Advanced options", open=False):
|
284 |
+
general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
285 |
+
character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
286 |
+
input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
287 |
+
recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
288 |
+
image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
289 |
+
keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
290 |
+
generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
|
291 |
+
with gr.Group():
|
292 |
+
with gr.Row():
|
293 |
+
input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
|
294 |
+
input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
|
295 |
+
random_character = gr.Button(value="Random character π²", size="sm")
|
296 |
+
input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
|
297 |
+
input_tags_to_copy = gr.Textbox(value="", visible=False)
|
298 |
+
with gr.Row():
|
299 |
+
copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
|
300 |
+
copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
|
301 |
+
translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
|
302 |
+
tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
|
303 |
+
input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit")
|
304 |
+
with gr.Accordion(label="Advanced options", open=False):
|
305 |
+
input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square")
|
306 |
+
input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long")
|
307 |
+
input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
|
308 |
+
input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
|
309 |
+
model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
310 |
+
dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
|
311 |
+
recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
|
312 |
+
recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
|
313 |
+
generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary")
|
314 |
+
with gr.Row():
|
315 |
+
with gr.Group():
|
316 |
+
output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
|
317 |
+
with gr.Row():
|
318 |
+
copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
|
319 |
+
copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
|
320 |
+
with gr.Group():
|
321 |
+
output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
|
322 |
+
with gr.Row():
|
323 |
+
copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
|
324 |
+
copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
|
325 |
+
|
326 |
+
random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character], queue=False, show_api=False)
|
327 |
+
|
328 |
+
translate_input_prompt_button.click(translate_prompt, [input_general], [input_general], queue=False, show_api=False)
|
329 |
+
translate_input_prompt_button.click(translate_prompt, [input_character], [input_character], queue=False, show_api=False)
|
330 |
+
translate_input_prompt_button.click(translate_prompt, [input_copyright], [input_copyright], queue=False, show_api=False)
|
331 |
+
|
332 |
+
generate_from_image_btn.click(
|
333 |
+
lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, show_api=False,
|
334 |
+
).success(
|
335 |
+
predict_tags_wd,
|
336 |
+
[input_image, input_general, image_algorithms, general_threshold, character_threshold],
|
337 |
+
[input_copyright, input_character, input_general, copy_input_btn],
|
338 |
+
show_api=False,
|
339 |
+
).success(
|
340 |
+
predict_tags_fl2_sd3, [input_image, input_general, image_algorithms], [input_general], show_api=False,
|
341 |
+
).success(
|
342 |
+
remove_specific_prompt, [input_general, keep_tags], [input_general], queue=False, show_api=False,
|
343 |
+
).success(
|
344 |
+
convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False,
|
345 |
+
).success(
|
346 |
+
insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False,
|
347 |
+
).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False)
|
348 |
+
copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\
|
349 |
+
.success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False)
|
350 |
+
copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\
|
351 |
+
.success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False)
|
352 |
+
|
353 |
+
generate_btn.click(
|
354 |
+
v2_upsampling_prompt,
|
355 |
+
[model_name, input_copyright, input_character, input_general,
|
356 |
+
input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
|
357 |
+
[output_text],
|
358 |
+
show_api=False,
|
359 |
+
).success(
|
360 |
+
convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False,
|
361 |
+
).success(
|
362 |
+
insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False,
|
363 |
+
).success(
|
364 |
+
insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False,
|
365 |
+
).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
|
366 |
+
None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False)
|
367 |
+
copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False)
|
368 |
+
copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False)
|
369 |
+
copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False)
|
370 |
+
copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False)
|
371 |
+
|
372 |
+
demo.queue()
|
373 |
+
demo.launch()
|
dc.py
ADDED
@@ -0,0 +1,1328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
from stablepy import Model_Diffusers
|
4 |
+
from stablepy.diffusers_vanilla.model import scheduler_names
|
5 |
+
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
6 |
+
import torch
|
7 |
+
import re
|
8 |
+
import shutil
|
9 |
+
import random
|
10 |
+
from stablepy import (
|
11 |
+
CONTROLNET_MODEL_IDS,
|
12 |
+
VALID_TASKS,
|
13 |
+
T2I_PREPROCESSOR_NAME,
|
14 |
+
FLASH_LORA,
|
15 |
+
SCHEDULER_CONFIG_MAP,
|
16 |
+
scheduler_names,
|
17 |
+
IP_ADAPTER_MODELS,
|
18 |
+
IP_ADAPTERS_SD,
|
19 |
+
IP_ADAPTERS_SDXL,
|
20 |
+
REPO_IMAGE_ENCODER,
|
21 |
+
ALL_PROMPT_WEIGHT_OPTIONS,
|
22 |
+
SD15_TASKS,
|
23 |
+
SDXL_TASKS,
|
24 |
+
)
|
25 |
+
import urllib.parse
|
26 |
+
import gradio as gr
|
27 |
+
from PIL import Image
|
28 |
+
import IPython.display
|
29 |
+
import time, json
|
30 |
+
from IPython.utils import capture
|
31 |
+
import logging
|
32 |
+
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
33 |
+
import diffusers
|
34 |
+
diffusers.utils.logging.set_verbosity(40)
|
35 |
+
import warnings
|
36 |
+
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
|
37 |
+
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
38 |
+
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
39 |
+
from stablepy import logger
|
40 |
+
logger.setLevel(logging.CRITICAL)
|
41 |
+
|
42 |
+
from env import (
|
43 |
+
hf_token,
|
44 |
+
hf_read_token, # to use only for private repos
|
45 |
+
CIVITAI_API_KEY,
|
46 |
+
HF_LORA_PRIVATE_REPOS1,
|
47 |
+
HF_LORA_PRIVATE_REPOS2,
|
48 |
+
HF_LORA_ESSENTIAL_PRIVATE_REPO,
|
49 |
+
HF_VAE_PRIVATE_REPO,
|
50 |
+
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO,
|
51 |
+
HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
52 |
+
directory_models,
|
53 |
+
directory_loras,
|
54 |
+
directory_vaes,
|
55 |
+
directory_embeds,
|
56 |
+
directory_embeds_sdxl,
|
57 |
+
directory_embeds_positive_sdxl,
|
58 |
+
load_diffusers_format_model,
|
59 |
+
download_model_list,
|
60 |
+
download_lora_list,
|
61 |
+
download_vae_list,
|
62 |
+
download_embeds,
|
63 |
+
)
|
64 |
+
|
65 |
+
preprocessor_controlnet = {
|
66 |
+
"openpose": [
|
67 |
+
"Openpose",
|
68 |
+
"None",
|
69 |
+
],
|
70 |
+
"scribble": [
|
71 |
+
"HED",
|
72 |
+
"Pidinet",
|
73 |
+
"None",
|
74 |
+
],
|
75 |
+
"softedge": [
|
76 |
+
"Pidinet",
|
77 |
+
"HED",
|
78 |
+
"HED safe",
|
79 |
+
"Pidinet safe",
|
80 |
+
"None",
|
81 |
+
],
|
82 |
+
"segmentation": [
|
83 |
+
"UPerNet",
|
84 |
+
"None",
|
85 |
+
],
|
86 |
+
"depth": [
|
87 |
+
"DPT",
|
88 |
+
"Midas",
|
89 |
+
"None",
|
90 |
+
],
|
91 |
+
"normalbae": [
|
92 |
+
"NormalBae",
|
93 |
+
"None",
|
94 |
+
],
|
95 |
+
"lineart": [
|
96 |
+
"Lineart",
|
97 |
+
"Lineart coarse",
|
98 |
+
"Lineart (anime)",
|
99 |
+
"None",
|
100 |
+
"None (anime)",
|
101 |
+
],
|
102 |
+
"shuffle": [
|
103 |
+
"ContentShuffle",
|
104 |
+
"None",
|
105 |
+
],
|
106 |
+
"canny": [
|
107 |
+
"Canny"
|
108 |
+
],
|
109 |
+
"mlsd": [
|
110 |
+
"MLSD"
|
111 |
+
],
|
112 |
+
"ip2p": [
|
113 |
+
"ip2p"
|
114 |
+
],
|
115 |
+
}
|
116 |
+
|
117 |
+
task_stablepy = {
|
118 |
+
'txt2img': 'txt2img',
|
119 |
+
'img2img': 'img2img',
|
120 |
+
'inpaint': 'inpaint',
|
121 |
+
# 'canny T2I Adapter': 'sdxl_canny_t2i', # NO HAVE STEP CALLBACK PARAMETERS SO NOT WORKS WITH DIFFUSERS 0.29.0
|
122 |
+
# 'sketch T2I Adapter': 'sdxl_sketch_t2i',
|
123 |
+
# 'lineart T2I Adapter': 'sdxl_lineart_t2i',
|
124 |
+
# 'depth-midas T2I Adapter': 'sdxl_depth-midas_t2i',
|
125 |
+
# 'openpose T2I Adapter': 'sdxl_openpose_t2i',
|
126 |
+
'openpose ControlNet': 'openpose',
|
127 |
+
'canny ControlNet': 'canny',
|
128 |
+
'mlsd ControlNet': 'mlsd',
|
129 |
+
'scribble ControlNet': 'scribble',
|
130 |
+
'softedge ControlNet': 'softedge',
|
131 |
+
'segmentation ControlNet': 'segmentation',
|
132 |
+
'depth ControlNet': 'depth',
|
133 |
+
'normalbae ControlNet': 'normalbae',
|
134 |
+
'lineart ControlNet': 'lineart',
|
135 |
+
# 'lineart_anime ControlNet': 'lineart_anime',
|
136 |
+
'shuffle ControlNet': 'shuffle',
|
137 |
+
'ip2p ControlNet': 'ip2p',
|
138 |
+
'optical pattern ControlNet': 'pattern',
|
139 |
+
'tile realistic': 'sdxl_tile_realistic',
|
140 |
+
}
|
141 |
+
|
142 |
+
task_model_list = list(task_stablepy.keys())
|
143 |
+
|
144 |
+
|
145 |
+
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
146 |
+
url = url.strip()
|
147 |
+
|
148 |
+
if "drive.google.com" in url:
|
149 |
+
original_dir = os.getcwd()
|
150 |
+
os.chdir(directory)
|
151 |
+
os.system(f"gdown --fuzzy {url}")
|
152 |
+
os.chdir(original_dir)
|
153 |
+
elif "huggingface.co" in url:
|
154 |
+
url = url.replace("?download=true", "")
|
155 |
+
# url = urllib.parse.quote(url, safe=':/') # fix encoding
|
156 |
+
if "/blob/" in url:
|
157 |
+
url = url.replace("/blob/", "/resolve/")
|
158 |
+
user_header = f'"Authorization: Bearer {hf_token}"'
|
159 |
+
if hf_token:
|
160 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
161 |
+
else:
|
162 |
+
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
163 |
+
elif "civitai.com" in url:
|
164 |
+
if "?" in url:
|
165 |
+
url = url.split("?")[0]
|
166 |
+
if civitai_api_key:
|
167 |
+
url = url + f"?token={civitai_api_key}"
|
168 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
169 |
+
else:
|
170 |
+
print("\033[91mYou need an API key to download Civitai models.\033[0m")
|
171 |
+
else:
|
172 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
173 |
+
|
174 |
+
|
175 |
+
def get_model_list(directory_path):
|
176 |
+
model_list = []
|
177 |
+
valid_extensions = {'.ckpt' , '.pt', '.pth', '.safetensors', '.bin'}
|
178 |
+
|
179 |
+
for filename in os.listdir(directory_path):
|
180 |
+
if os.path.splitext(filename)[1] in valid_extensions:
|
181 |
+
name_without_extension = os.path.splitext(filename)[0]
|
182 |
+
file_path = os.path.join(directory_path, filename)
|
183 |
+
# model_list.append((name_without_extension, file_path))
|
184 |
+
model_list.append(file_path)
|
185 |
+
print('\033[34mFILE: ' + file_path + '\033[0m')
|
186 |
+
return model_list
|
187 |
+
|
188 |
+
|
189 |
+
def process_string(input_string):
|
190 |
+
parts = input_string.split('/')
|
191 |
+
|
192 |
+
if len(parts) == 2:
|
193 |
+
first_element = parts[1]
|
194 |
+
complete_string = input_string
|
195 |
+
result = (first_element, complete_string)
|
196 |
+
return result
|
197 |
+
else:
|
198 |
+
return None
|
199 |
+
|
200 |
+
## BEGIN MOD
|
201 |
+
from modutils import (
|
202 |
+
to_list,
|
203 |
+
list_uniq,
|
204 |
+
list_sub,
|
205 |
+
get_model_id_list,
|
206 |
+
get_tupled_embed_list,
|
207 |
+
get_tupled_model_list,
|
208 |
+
get_lora_model_list,
|
209 |
+
download_private_repo,
|
210 |
+
)
|
211 |
+
|
212 |
+
# - **Download Models**
|
213 |
+
download_model = ", ".join(download_model_list)
|
214 |
+
# - **Download VAEs**
|
215 |
+
download_vae = ", ".join(download_vae_list)
|
216 |
+
# - **Download LoRAs**
|
217 |
+
download_lora = ", ".join(download_lora_list)
|
218 |
+
|
219 |
+
#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, directory_loras, True)
|
220 |
+
download_private_repo(HF_VAE_PRIVATE_REPO, directory_vaes, False)
|
221 |
+
|
222 |
+
load_diffusers_format_model = list_uniq(load_diffusers_format_model + get_model_id_list())
|
223 |
+
## END MOD
|
224 |
+
|
225 |
+
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
226 |
+
hf_token = os.environ.get("HF_TOKEN")
|
227 |
+
|
228 |
+
# Download stuffs
|
229 |
+
for url in [url.strip() for url in download_model.split(',')]:
|
230 |
+
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
231 |
+
download_things(directory_models, url, hf_token, CIVITAI_API_KEY)
|
232 |
+
for url in [url.strip() for url in download_vae.split(',')]:
|
233 |
+
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
234 |
+
download_things(directory_vaes, url, hf_token, CIVITAI_API_KEY)
|
235 |
+
for url in [url.strip() for url in download_lora.split(',')]:
|
236 |
+
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
237 |
+
download_things(directory_loras, url, hf_token, CIVITAI_API_KEY)
|
238 |
+
|
239 |
+
# Download Embeddings
|
240 |
+
for url_embed in download_embeds:
|
241 |
+
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
242 |
+
download_things(directory_embeds, url_embed, hf_token, CIVITAI_API_KEY)
|
243 |
+
|
244 |
+
# Build list models
|
245 |
+
embed_list = get_model_list(directory_embeds)
|
246 |
+
model_list = get_model_list(directory_models)
|
247 |
+
model_list = load_diffusers_format_model + model_list
|
248 |
+
## BEGIN MOD
|
249 |
+
lora_model_list = get_lora_model_list()
|
250 |
+
vae_model_list = get_model_list(directory_vaes)
|
251 |
+
vae_model_list.insert(0, "None")
|
252 |
+
|
253 |
+
#download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, directory_embeds_sdxl, False)
|
254 |
+
#download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, directory_embeds_positive_sdxl, False)
|
255 |
+
embed_sdxl_list = get_model_list(directory_embeds_sdxl) + get_model_list(directory_embeds_positive_sdxl)
|
256 |
+
|
257 |
+
def get_embed_list(pipeline_name):
|
258 |
+
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
|
259 |
+
|
260 |
+
|
261 |
+
## END MOD
|
262 |
+
|
263 |
+
print('\033[33mπ Download and listing of valid models completed.\033[0m')
|
264 |
+
|
265 |
+
upscaler_dict_gui = {
|
266 |
+
None : None,
|
267 |
+
"Lanczos" : "Lanczos",
|
268 |
+
"Nearest" : "Nearest",
|
269 |
+
"RealESRGAN_x4plus" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
270 |
+
"RealESRNet_x4plus" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
|
271 |
+
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
272 |
+
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
273 |
+
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
274 |
+
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
275 |
+
"realesr-general-wdn-x4v3" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
276 |
+
"4x-UltraSharp" : "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
277 |
+
"4x_foolhardy_Remacri" : "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
278 |
+
"Remacri4xExtraSmoother" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
279 |
+
"AnimeSharp4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
280 |
+
"lollypop" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
281 |
+
"RealisticRescaler4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
282 |
+
"NickelbackFS4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
283 |
+
}
|
284 |
+
|
285 |
+
|
286 |
+
def extract_parameters(input_string):
|
287 |
+
parameters = {}
|
288 |
+
input_string = input_string.replace("\n", "")
|
289 |
+
|
290 |
+
if not "Negative prompt:" in input_string:
|
291 |
+
print("Negative prompt not detected")
|
292 |
+
parameters["prompt"] = input_string
|
293 |
+
return parameters
|
294 |
+
|
295 |
+
parm = input_string.split("Negative prompt:")
|
296 |
+
parameters["prompt"] = parm[0]
|
297 |
+
if not "Steps:" in parm[1]:
|
298 |
+
print("Steps not detected")
|
299 |
+
parameters["neg_prompt"] = parm[1]
|
300 |
+
return parameters
|
301 |
+
parm = parm[1].split("Steps:")
|
302 |
+
parameters["neg_prompt"] = parm[0]
|
303 |
+
input_string = "Steps:" + parm[1]
|
304 |
+
|
305 |
+
# Extracting Steps
|
306 |
+
steps_match = re.search(r'Steps: (\d+)', input_string)
|
307 |
+
if steps_match:
|
308 |
+
parameters['Steps'] = int(steps_match.group(1))
|
309 |
+
|
310 |
+
# Extracting Size
|
311 |
+
size_match = re.search(r'Size: (\d+x\d+)', input_string)
|
312 |
+
if size_match:
|
313 |
+
parameters['Size'] = size_match.group(1)
|
314 |
+
width, height = map(int, parameters['Size'].split('x'))
|
315 |
+
parameters['width'] = width
|
316 |
+
parameters['height'] = height
|
317 |
+
|
318 |
+
# Extracting other parameters
|
319 |
+
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
|
320 |
+
for param in other_parameters:
|
321 |
+
parameters[param[0]] = param[1].strip('"')
|
322 |
+
|
323 |
+
return parameters
|
324 |
+
|
325 |
+
|
326 |
+
## BEGIN MOD
|
327 |
+
class GuiSD:
|
328 |
+
def __init__(self):
|
329 |
+
self.model = None
|
330 |
+
|
331 |
+
print("Loading model...")
|
332 |
+
self.model = Model_Diffusers(
|
333 |
+
base_model_id="cagliostrolab/animagine-xl-3.1",
|
334 |
+
task_name="txt2img",
|
335 |
+
vae_model=None,
|
336 |
+
type_model_precision=torch.float16,
|
337 |
+
retain_task_model_in_cache=False,
|
338 |
+
)
|
339 |
+
|
340 |
+
def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)):
|
341 |
+
progress(0, desc="Start inference...")
|
342 |
+
images, image_list = model(**pipe_params)
|
343 |
+
progress(1, desc="Inference completed.")
|
344 |
+
if not isinstance(images, list): images = [images]
|
345 |
+
img = []
|
346 |
+
for image in images:
|
347 |
+
img.append((image, None))
|
348 |
+
return img
|
349 |
+
|
350 |
+
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
351 |
+
|
352 |
+
yield f"Loading model: {model_name}"
|
353 |
+
|
354 |
+
vae_model = vae_model if vae_model != "None" else None
|
355 |
+
|
356 |
+
if model_name in model_list:
|
357 |
+
model_is_xl = "xl" in model_name.lower()
|
358 |
+
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
|
359 |
+
model_type = "SDXL" if model_is_xl else "SD 1.5"
|
360 |
+
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
361 |
+
|
362 |
+
if incompatible_vae:
|
363 |
+
vae_model = None
|
364 |
+
|
365 |
+
|
366 |
+
self.model.load_pipe(
|
367 |
+
model_name,
|
368 |
+
task_name=task_stablepy[task],
|
369 |
+
vae_model=vae_model if vae_model != "None" else None,
|
370 |
+
type_model_precision=torch.float16,
|
371 |
+
retain_task_model_in_cache=False,
|
372 |
+
)
|
373 |
+
yield f"Model loaded: {model_name}"
|
374 |
+
|
375 |
+
@spaces.GPU
|
376 |
+
def generate_pipeline(
|
377 |
+
self,
|
378 |
+
prompt,
|
379 |
+
neg_prompt,
|
380 |
+
num_images,
|
381 |
+
steps,
|
382 |
+
cfg,
|
383 |
+
clip_skip,
|
384 |
+
seed,
|
385 |
+
lora1,
|
386 |
+
lora_scale1,
|
387 |
+
lora2,
|
388 |
+
lora_scale2,
|
389 |
+
lora3,
|
390 |
+
lora_scale3,
|
391 |
+
lora4,
|
392 |
+
lora_scale4,
|
393 |
+
lora5,
|
394 |
+
lora_scale5,
|
395 |
+
sampler,
|
396 |
+
img_height,
|
397 |
+
img_width,
|
398 |
+
model_name,
|
399 |
+
vae_model,
|
400 |
+
task,
|
401 |
+
image_control,
|
402 |
+
preprocessor_name,
|
403 |
+
preprocess_resolution,
|
404 |
+
image_resolution,
|
405 |
+
style_prompt, # list []
|
406 |
+
style_json_file,
|
407 |
+
image_mask,
|
408 |
+
strength,
|
409 |
+
low_threshold,
|
410 |
+
high_threshold,
|
411 |
+
value_threshold,
|
412 |
+
distance_threshold,
|
413 |
+
controlnet_output_scaling_in_unet,
|
414 |
+
controlnet_start_threshold,
|
415 |
+
controlnet_stop_threshold,
|
416 |
+
textual_inversion,
|
417 |
+
syntax_weights,
|
418 |
+
upscaler_model_path,
|
419 |
+
upscaler_increases_size,
|
420 |
+
esrgan_tile,
|
421 |
+
esrgan_tile_overlap,
|
422 |
+
hires_steps,
|
423 |
+
hires_denoising_strength,
|
424 |
+
hires_sampler,
|
425 |
+
hires_prompt,
|
426 |
+
hires_negative_prompt,
|
427 |
+
hires_before_adetailer,
|
428 |
+
hires_after_adetailer,
|
429 |
+
loop_generation,
|
430 |
+
leave_progress_bar,
|
431 |
+
disable_progress_bar,
|
432 |
+
image_previews,
|
433 |
+
display_images,
|
434 |
+
save_generated_images,
|
435 |
+
image_storage_location,
|
436 |
+
retain_compel_previous_load,
|
437 |
+
retain_detailfix_model_previous_load,
|
438 |
+
retain_hires_model_previous_load,
|
439 |
+
t2i_adapter_preprocessor,
|
440 |
+
t2i_adapter_conditioning_scale,
|
441 |
+
t2i_adapter_conditioning_factor,
|
442 |
+
xformers_memory_efficient_attention,
|
443 |
+
freeu,
|
444 |
+
generator_in_cpu,
|
445 |
+
adetailer_inpaint_only,
|
446 |
+
adetailer_verbose,
|
447 |
+
adetailer_sampler,
|
448 |
+
adetailer_active_a,
|
449 |
+
prompt_ad_a,
|
450 |
+
negative_prompt_ad_a,
|
451 |
+
strength_ad_a,
|
452 |
+
face_detector_ad_a,
|
453 |
+
person_detector_ad_a,
|
454 |
+
hand_detector_ad_a,
|
455 |
+
mask_dilation_a,
|
456 |
+
mask_blur_a,
|
457 |
+
mask_padding_a,
|
458 |
+
adetailer_active_b,
|
459 |
+
prompt_ad_b,
|
460 |
+
negative_prompt_ad_b,
|
461 |
+
strength_ad_b,
|
462 |
+
face_detector_ad_b,
|
463 |
+
person_detector_ad_b,
|
464 |
+
hand_detector_ad_b,
|
465 |
+
mask_dilation_b,
|
466 |
+
mask_blur_b,
|
467 |
+
mask_padding_b,
|
468 |
+
retain_task_cache_gui,
|
469 |
+
image_ip1,
|
470 |
+
mask_ip1,
|
471 |
+
model_ip1,
|
472 |
+
mode_ip1,
|
473 |
+
scale_ip1,
|
474 |
+
image_ip2,
|
475 |
+
mask_ip2,
|
476 |
+
model_ip2,
|
477 |
+
mode_ip2,
|
478 |
+
scale_ip2,
|
479 |
+
progress=gr.Progress(track_tqdm=True),
|
480 |
+
):
|
481 |
+
progress(0, desc="Preparing inference...")
|
482 |
+
|
483 |
+
vae_model = vae_model if vae_model != "None" else None
|
484 |
+
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
485 |
+
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
486 |
+
msg_lora = []
|
487 |
+
|
488 |
+
## BEGIN MOD
|
489 |
+
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
490 |
+
global lora_model_list
|
491 |
+
lora_model_list = get_lora_model_list()
|
492 |
+
## END MOD
|
493 |
+
|
494 |
+
if model_name in model_list:
|
495 |
+
model_is_xl = "xl" in model_name.lower()
|
496 |
+
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
|
497 |
+
model_type = "SDXL" if model_is_xl else "SD 1.5"
|
498 |
+
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
499 |
+
|
500 |
+
if incompatible_vae:
|
501 |
+
msg_inc_vae = (
|
502 |
+
f"The selected VAE is for a { 'SD 1.5' if model_is_xl else 'SDXL' } model, but you"
|
503 |
+
f" are using a { model_type } model. The default VAE "
|
504 |
+
"will be used."
|
505 |
+
)
|
506 |
+
gr.Info(msg_inc_vae)
|
507 |
+
vae_msg = msg_inc_vae
|
508 |
+
vae_model = None
|
509 |
+
|
510 |
+
for la in loras_list:
|
511 |
+
if la is not None and la != "None" and la in lora_model_list:
|
512 |
+
print(la)
|
513 |
+
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
|
514 |
+
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
|
515 |
+
msg_inc_lora = f"The LoRA {la} is for { 'SD 1.5' if model_is_xl else 'SDXL' }, but you are using { model_type }."
|
516 |
+
gr.Info(msg_inc_lora)
|
517 |
+
msg_lora.append(msg_inc_lora)
|
518 |
+
|
519 |
+
task = task_stablepy[task]
|
520 |
+
|
521 |
+
params_ip_img = []
|
522 |
+
params_ip_msk = []
|
523 |
+
params_ip_model = []
|
524 |
+
params_ip_mode = []
|
525 |
+
params_ip_scale = []
|
526 |
|