Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
import torch | |
import os | |
from diffusers import DiffusionPipeline | |
import torch._dynamo | |
torch._dynamo.config.suppress_errors = False | |
torch._inductor.config.disable_progress = False | |
print(os.environ) | |
import subprocess | |
subprocess.run("pip list", shell=True) | |
dtype = torch.float32 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype) | |
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True) | |
pipe.to(device) | |
pipe2 = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype) | |
pipe2.to(device) | |
def infer(prompt: str, progress=gr.Progress(track_tqdm=True)): | |
image = pipe( | |
prompt=prompt, | |
output_type="pil", | |
).images[0] | |
return image | |
def infer2(prompt: str, progress=gr.Progress(track_tqdm=True)): | |
image = pipe2( | |
prompt=prompt, | |
output_type="pil", | |
).images[0] | |
return image | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run with torch.compile()", scale=0) | |
run_button2 = gr.Button("Run without torch.compile()", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
gr.Examples( | |
examples=examples, | |
#fn=infer, | |
inputs=[prompt], | |
#outputs=[result, seed], | |
#cache_examples=True, | |
#cache_mode="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result] | |
) | |
run_button2.click(infer2, [prompt], [result]) | |
demo.launch(ssr_mode=False) |