Upload 4 files
Browse files- app.py +8 -5
- dc.py +9 -12
- modutils.py +21 -21
app.py
CHANGED
@@ -7,7 +7,8 @@ from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_sample
|
|
7 |
get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
|
8 |
preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
|
9 |
download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json,
|
10 |
-
get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL
|
|
|
11 |
# Translator
|
12 |
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
|
13 |
get_llm_formats, get_dolphin_model_format, get_dolphin_models,
|
@@ -92,6 +93,8 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
92 |
|
93 |
with gr.Row():
|
94 |
sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler")
|
|
|
|
|
95 |
vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])
|
96 |
|
97 |
with gr.Accordion("LoRA", open=True, visible=True):
|
@@ -161,7 +164,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
161 |
with gr.Accordion("Select from Gallery", open=False):
|
162 |
lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
|
163 |
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
164 |
-
lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1)
|
165 |
lora_download = gr.Button("Get and set LoRA and apply to prompt")
|
166 |
|
167 |
with gr.Row():
|
@@ -200,7 +203,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
200 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
201 |
guidance_scale, num_inference_steps, model_name,
|
202 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
203 |
-
sampler, vae_model, auto_trans],
|
204 |
outputs=[result],
|
205 |
queue=True,
|
206 |
show_progress="full",
|
@@ -213,7 +216,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
213 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
214 |
guidance_scale, num_inference_steps, model_name,
|
215 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
216 |
-
sampler, vae_model, auto_trans],
|
217 |
outputs=[result],
|
218 |
queue=False,
|
219 |
show_api=True,
|
@@ -236,7 +239,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
236 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
237 |
guidance_scale, num_inference_steps, model_name,
|
238 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
239 |
-
sampler, vae_model],
|
240 |
outputs=[result],
|
241 |
queue=True,
|
242 |
show_progress="full",
|
|
|
7 |
get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
|
8 |
preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
|
9 |
download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json,
|
10 |
+
get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
|
11 |
+
SCHEDULE_TYPE_OPTIONS, SCHEDULE_PREDICTION_TYPE_OPTIONS)
|
12 |
# Translator
|
13 |
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
|
14 |
get_llm_formats, get_dolphin_model_format, get_dolphin_models,
|
|
|
93 |
|
94 |
with gr.Row():
|
95 |
sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler")
|
96 |
+
schedule_type = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
|
97 |
+
schedule_prediction_type = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
|
98 |
vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])
|
99 |
|
100 |
with gr.Accordion("LoRA", open=True, visible=True):
|
|
|
164 |
with gr.Accordion("Select from Gallery", open=False):
|
165 |
lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
|
166 |
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
167 |
+
lora_download_url = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1)
|
168 |
lora_download = gr.Button("Get and set LoRA and apply to prompt")
|
169 |
|
170 |
with gr.Row():
|
|
|
203 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
204 |
guidance_scale, num_inference_steps, model_name,
|
205 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
206 |
+
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type],
|
207 |
outputs=[result],
|
208 |
queue=True,
|
209 |
show_progress="full",
|
|
|
216 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
217 |
guidance_scale, num_inference_steps, model_name,
|
218 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
219 |
+
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type],
|
220 |
outputs=[result],
|
221 |
queue=False,
|
222 |
show_api=True,
|
|
|
239 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
240 |
guidance_scale, num_inference_steps, model_name,
|
241 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
242 |
+
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type],
|
243 |
outputs=[result],
|
244 |
queue=True,
|
245 |
show_progress="full",
|
dc.py
CHANGED
@@ -690,29 +690,29 @@ sd_gen = GuiSD()
|
|
690 |
|
691 |
from pathlib import Path
|
692 |
from PIL import Image
|
693 |
-
import
|
|
|
|
|
|
|
|
|
694 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
695 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
696 |
get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
|
697 |
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en, get_t2i_model_info, get_civitai_tag, save_image_history)
|
698 |
|
699 |
|
700 |
-
|
701 |
#@spaces.GPU
|
702 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
703 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
704 |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
|
705 |
-
sampler = "Euler", vae = None, translate=True,
|
706 |
-
|
707 |
-
import numpy as np
|
708 |
MAX_SEED = np.iinfo(np.int32).max
|
709 |
|
710 |
image_previews = True
|
711 |
load_lora_cpu = False
|
712 |
verbose_info = False
|
713 |
gpu_duration = 59
|
714 |
-
schedule_type = SCHEDULE_TYPE_OPTIONS[0]
|
715 |
-
schedule_prediction_type = SCHEDULE_PREDICTION_TYPE_OPTIONS[0]
|
716 |
filename_pattern = "model,seed"
|
717 |
|
718 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
@@ -766,8 +766,6 @@ def __infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidan
|
|
766 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
767 |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
|
768 |
sampler = "Euler a", vae = None, translate=True, progress=gr.Progress(track_tqdm=True)):
|
769 |
-
import PIL
|
770 |
-
import numpy as np
|
771 |
MAX_SEED = np.iinfo(np.int32).max
|
772 |
|
773 |
load_lora_cpu = False
|
@@ -824,7 +822,8 @@ def __infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidan
|
|
824 |
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
825 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
826 |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
|
827 |
-
sampler = "Euler
|
|
|
828 |
return gr.update(visible=True)
|
829 |
|
830 |
|
@@ -868,7 +867,6 @@ def enable_diffusers_model_detail(is_enable: bool = False, model_name: str = "")
|
|
868 |
|
869 |
|
870 |
def load_model_prompt_dict():
|
871 |
-
import json
|
872 |
dict = {}
|
873 |
try:
|
874 |
with open('model_dict.json', encoding='utf-8') as f:
|
@@ -1005,7 +1003,6 @@ def download_lora(dl_urls: str):
|
|
1005 |
|
1006 |
|
1007 |
def copy_lora(path: str, new_path: str):
|
1008 |
-
import shutil
|
1009 |
if path == new_path: return new_path
|
1010 |
cpath = Path(path)
|
1011 |
npath = Path(new_path)
|
|
|
690 |
|
691 |
from pathlib import Path
|
692 |
from PIL import Image
|
693 |
+
import PIL
|
694 |
+
import numpy as np
|
695 |
+
import random
|
696 |
+
import json
|
697 |
+
import shutil
|
698 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
699 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
700 |
get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
|
701 |
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en, get_t2i_model_info, get_civitai_tag, save_image_history)
|
702 |
|
703 |
|
|
|
704 |
#@spaces.GPU
|
705 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
706 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
707 |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
|
708 |
+
sampler = "Euler", vae = None, translate=True, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
|
709 |
+
progress=gr.Progress(track_tqdm=True)):
|
|
|
710 |
MAX_SEED = np.iinfo(np.int32).max
|
711 |
|
712 |
image_previews = True
|
713 |
load_lora_cpu = False
|
714 |
verbose_info = False
|
715 |
gpu_duration = 59
|
|
|
|
|
716 |
filename_pattern = "model,seed"
|
717 |
|
718 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
|
|
766 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
767 |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
|
768 |
sampler = "Euler a", vae = None, translate=True, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
769 |
MAX_SEED = np.iinfo(np.int32).max
|
770 |
|
771 |
load_lora_cpu = False
|
|
|
822 |
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
823 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
824 |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
|
825 |
+
sampler = "Euler", vae = None, translate = True, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
|
826 |
+
progress=gr.Progress(track_tqdm=True)):
|
827 |
return gr.update(visible=True)
|
828 |
|
829 |
|
|
|
867 |
|
868 |
|
869 |
def load_model_prompt_dict():
|
|
|
870 |
dict = {}
|
871 |
try:
|
872 |
with open('model_dict.json', encoding='utf-8') as f:
|
|
|
1003 |
|
1004 |
|
1005 |
def copy_lora(path: str, new_path: str):
|
|
|
1006 |
if path == new_path: return new_path
|
1007 |
cpath = Path(path)
|
1008 |
npath = Path(new_path)
|
modutils.py
CHANGED
@@ -960,7 +960,7 @@ def move_file_lora(filepaths):
|
|
960 |
|
961 |
CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"]
|
962 |
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
|
963 |
-
CIVITAI_BASEMODEL = ["Pony", "
|
964 |
|
965 |
|
966 |
def get_civitai_info(path):
|
@@ -1320,10 +1320,10 @@ style_list = [
|
|
1320 |
|
1321 |
|
1322 |
optimization_list = {
|
1323 |
-
"None": [28, 7., 'Euler
|
1324 |
-
"Default": [28, 7., 'Euler
|
1325 |
-
"SPO": [28, 7., 'Euler
|
1326 |
-
"DPO": [28, 7., 'Euler
|
1327 |
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.],
|
1328 |
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.],
|
1329 |
"Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.],
|
@@ -1331,10 +1331,10 @@ optimization_list = {
|
|
1331 |
"Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.],
|
1332 |
"Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.],
|
1333 |
"Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.],
|
1334 |
-
"PCM 16step": [16, 4., 'Euler
|
1335 |
-
"PCM 8step": [8, 4., 'Euler
|
1336 |
-
"PCM 4step": [4, 2., 'Euler
|
1337 |
-
"PCM 2step": [2, 1., 'Euler
|
1338 |
}
|
1339 |
|
1340 |
|
@@ -1362,13 +1362,13 @@ def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_g
|
|
1362 |
|
1363 |
# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui]
|
1364 |
preset_sampler_setting = {
|
1365 |
-
"None": ["Euler
|
1366 |
"Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"],
|
1367 |
-
"Anime 3:4 Standard": ["Euler
|
1368 |
-
"Anime 3:4 Heavy": ["Euler
|
1369 |
"Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"],
|
1370 |
-
"Anime 1:1 Standard": ["Euler
|
1371 |
-
"Anime 1:1 Heavy": ["Euler
|
1372 |
"Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"],
|
1373 |
"Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"],
|
1374 |
"Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"],
|
@@ -1380,9 +1380,9 @@ preset_sampler_setting = {
|
|
1380 |
|
1381 |
def set_sampler_settings(sampler_setting):
|
1382 |
if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None":
|
1383 |
-
return gr.update(value="Euler
|
1384 |
gr.update(value=1024), gr.update(value=1024), gr.update(value="None")
|
1385 |
-
v = preset_sampler_setting.get(sampler_setting, ["Euler
|
1386 |
# sampler, steps, cfg, clip_skip, width, height, optimization
|
1387 |
return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\
|
1388 |
gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6])
|
@@ -1573,7 +1573,7 @@ EXAMPLES_GUI = [
|
|
1573 |
7.5,
|
1574 |
True,
|
1575 |
-1,
|
1576 |
-
"Euler
|
1577 |
1152,
|
1578 |
896,
|
1579 |
"votepurchase/animagine-xl-3.1",
|
@@ -1586,7 +1586,7 @@ EXAMPLES_GUI = [
|
|
1586 |
5.,
|
1587 |
True,
|
1588 |
-1,
|
1589 |
-
"Euler
|
1590 |
1024,
|
1591 |
1024,
|
1592 |
"votepurchase/ponyDiffusionV6XL",
|
@@ -1599,7 +1599,7 @@ EXAMPLES_GUI = [
|
|
1599 |
7.0,
|
1600 |
True,
|
1601 |
-1,
|
1602 |
-
"Euler
|
1603 |
1024,
|
1604 |
1024,
|
1605 |
"Raelina/Rae-Diffusion-XL-V2",
|
@@ -1612,7 +1612,7 @@ EXAMPLES_GUI = [
|
|
1612 |
7.0,
|
1613 |
True,
|
1614 |
-1,
|
1615 |
-
"Euler
|
1616 |
1024,
|
1617 |
1024,
|
1618 |
"Raelina/Raemu-XL-V4",
|
@@ -1625,7 +1625,7 @@ EXAMPLES_GUI = [
|
|
1625 |
7.,
|
1626 |
True,
|
1627 |
-1,
|
1628 |
-
"Euler
|
1629 |
1024,
|
1630 |
1024,
|
1631 |
"cagliostrolab/animagine-xl-3.1",
|
|
|
960 |
|
961 |
CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"]
|
962 |
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
|
963 |
+
CIVITAI_BASEMODEL = ["Pony", "Illustrious", "SDXL 1.0", "SD 1.5", "Flux.1 D", "Flux.1 S"]
|
964 |
|
965 |
|
966 |
def get_civitai_info(path):
|
|
|
1320 |
|
1321 |
|
1322 |
optimization_list = {
|
1323 |
+
"None": [28, 7., 'Euler', False, 'None', 1.],
|
1324 |
+
"Default": [28, 7., 'Euler', False, 'None', 1.],
|
1325 |
+
"SPO": [28, 7., 'Euler', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.],
|
1326 |
+
"DPO": [28, 7., 'Euler', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.],
|
1327 |
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.],
|
1328 |
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.],
|
1329 |
"Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.],
|
|
|
1331 |
"Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.],
|
1332 |
"Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.],
|
1333 |
"Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.],
|
1334 |
+
"PCM 16step": [16, 4., 'Euler trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.],
|
1335 |
+
"PCM 8step": [8, 4., 'Euler trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.],
|
1336 |
+
"PCM 4step": [4, 2., 'Euler trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.],
|
1337 |
+
"PCM 2step": [2, 1., 'Euler trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.],
|
1338 |
}
|
1339 |
|
1340 |
|
|
|
1362 |
|
1363 |
# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui]
|
1364 |
preset_sampler_setting = {
|
1365 |
+
"None": ["Euler", 28, 7., True, 1024, 1024, "None"],
|
1366 |
"Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"],
|
1367 |
+
"Anime 3:4 Standard": ["Euler", 28, 7., True, 896, 1152, "None"],
|
1368 |
+
"Anime 3:4 Heavy": ["Euler", 40, 7., True, 896, 1152, "None"],
|
1369 |
"Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"],
|
1370 |
+
"Anime 1:1 Standard": ["Euler", 28, 7., True, 1024, 1024, "None"],
|
1371 |
+
"Anime 1:1 Heavy": ["Euler", 40, 7., True, 1024, 1024, "None"],
|
1372 |
"Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"],
|
1373 |
"Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"],
|
1374 |
"Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"],
|
|
|
1380 |
|
1381 |
def set_sampler_settings(sampler_setting):
|
1382 |
if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None":
|
1383 |
+
return gr.update(value="Euler"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\
|
1384 |
gr.update(value=1024), gr.update(value=1024), gr.update(value="None")
|
1385 |
+
v = preset_sampler_setting.get(sampler_setting, ["Euler", 28, 7., True, 1024, 1024])
|
1386 |
# sampler, steps, cfg, clip_skip, width, height, optimization
|
1387 |
return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\
|
1388 |
gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6])
|
|
|
1573 |
7.5,
|
1574 |
True,
|
1575 |
-1,
|
1576 |
+
"Euler",
|
1577 |
1152,
|
1578 |
896,
|
1579 |
"votepurchase/animagine-xl-3.1",
|
|
|
1586 |
5.,
|
1587 |
True,
|
1588 |
-1,
|
1589 |
+
"Euler",
|
1590 |
1024,
|
1591 |
1024,
|
1592 |
"votepurchase/ponyDiffusionV6XL",
|
|
|
1599 |
7.0,
|
1600 |
True,
|
1601 |
-1,
|
1602 |
+
"Euler",
|
1603 |
1024,
|
1604 |
1024,
|
1605 |
"Raelina/Rae-Diffusion-XL-V2",
|
|
|
1612 |
7.0,
|
1613 |
True,
|
1614 |
-1,
|
1615 |
+
"Euler",
|
1616 |
1024,
|
1617 |
1024,
|
1618 |
"Raelina/Raemu-XL-V4",
|
|
|
1625 |
7.,
|
1626 |
True,
|
1627 |
-1,
|
1628 |
+
"Euler",
|
1629 |
1024,
|
1630 |
1024,
|
1631 |
"cagliostrolab/animagine-xl-3.1",
|