|
import spaces
|
|
from PIL import Image
|
|
import torch
|
|
import gradio as gr
|
|
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
|
from pathlib import Path
|
|
|
|
|
|
WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
|
|
WD_MODEL_NAME = WD_MODEL_NAMES[0]
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
default_device = device
|
|
|
|
try:
|
|
wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True).to(default_device).eval()
|
|
wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
|
|
except Exception as e:
|
|
print(e)
|
|
wd_model = wd_processor = None
|
|
|
|
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
|
|
return (
|
|
[f"1{noun}"]
|
|
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
|
|
+ [f"{maximum+1}+{noun}s"]
|
|
)
|
|
|
|
|
|
PEOPLE_TAGS = (
|
|
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
|
|
)
|
|
|
|
|
|
RATING_MAP = {
|
|
"sfw": "safe",
|
|
"general": "safe",
|
|
"sensitive": "sensitive",
|
|
"questionable": "nsfw",
|
|
"explicit": "explicit, nsfw",
|
|
}
|
|
DANBOORU_TO_E621_RATING_MAP = {
|
|
"sfw": "rating_safe",
|
|
"general": "rating_safe",
|
|
"safe": "rating_safe",
|
|
"sensitive": "rating_safe",
|
|
"nsfw": "rating_explicit",
|
|
"explicit, nsfw": "rating_explicit",
|
|
"explicit": "rating_explicit",
|
|
"rating:safe": "rating_safe",
|
|
"rating:general": "rating_safe",
|
|
"rating:sensitive": "rating_safe",
|
|
"rating:questionable, nsfw": "rating_explicit",
|
|
"rating:explicit, nsfw": "rating_explicit",
|
|
}
|
|
|
|
|
|
|
|
kaomojis = [
|
|
"0_0",
|
|
"(o)_(o)",
|
|
"+_+",
|
|
"+_-",
|
|
"._.",
|
|
"<o>_<o>",
|
|
"<|>_<|>",
|
|
"=_=",
|
|
">_<",
|
|
"3_3",
|
|
"6_9",
|
|
">_o",
|
|
"@_@",
|
|
"^_^",
|
|
"o_o",
|
|
"u_u",
|
|
"x_x",
|
|
"|_|",
|
|
"||_||",
|
|
]
|
|
|
|
|
|
def replace_underline(x: str):
|
|
return x.strip().replace("_", " ") if x not in kaomojis else x.strip()
|
|
|
|
|
|
def to_list(s):
|
|
return [x.strip() for x in s.split(",") if not s == ""]
|
|
|
|
|
|
def list_sub(a, b):
|
|
return [e for e in a if e not in b]
|
|
|
|
|
|
def list_uniq(l):
|
|
return sorted(set(l), key=l.index)
|
|
|
|
|
|
def load_dict_from_csv(filename):
|
|
dict = {}
|
|
if not Path(filename).exists():
|
|
if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
|
|
else: return dict
|
|
try:
|
|
with open(filename, 'r', encoding="utf-8") as f:
|
|
lines = f.readlines()
|
|
except Exception:
|
|
print(f"Failed to open dictionary file: {filename}")
|
|
return dict
|
|
for line in lines:
|
|
parts = line.strip().split(',')
|
|
dict[parts[0]] = parts[1]
|
|
return dict
|
|
|
|
|
|
anime_series_dict = load_dict_from_csv('character_series_dict.csv')
|
|
|
|
|
|
def character_list_to_series_list(character_list):
|
|
output_series_tag = []
|
|
series_tag = ""
|
|
series_dict = anime_series_dict
|
|
for tag in character_list:
|
|
series_tag = series_dict.get(tag, "")
|
|
if tag.endswith(")"):
|
|
tags = tag.split("(")
|
|
character_tag = "(".join(tags[:-1])
|
|
if character_tag.endswith(" "):
|
|
character_tag = character_tag[:-1]
|
|
series_tag = tags[-1].replace(")", "")
|
|
|
|
if series_tag:
|
|
output_series_tag.append(series_tag)
|
|
|
|
return output_series_tag
|
|
|
|
|
|
def select_random_character(series: str, character: str):
|
|
from random import seed, randrange
|
|
seed()
|
|
character_list = list(anime_series_dict.keys())
|
|
character = character_list[randrange(len(character_list) - 1)]
|
|
series = anime_series_dict.get(character.split(",")[0].strip(), "")
|
|
return series, character
|
|
|
|
|
|
def danbooru_to_e621(dtag, e621_dict):
|
|
def d_to_e(match, e621_dict):
|
|
dtag = match.group(0)
|
|
etag = e621_dict.get(replace_underline(dtag), "")
|
|
if etag:
|
|
return etag
|
|
else:
|
|
return dtag
|
|
|
|
import re
|
|
tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)
|
|
return tag
|
|
|
|
|
|
danbooru_to_e621_dict = load_dict_from_csv('danbooru_e621.csv')
|
|
|
|
|
|
def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "danbooru"):
|
|
if prompt_type == "danbooru": return input_prompt
|
|
tags = input_prompt.split(",") if input_prompt else []
|
|
people_tags: list[str] = []
|
|
other_tags: list[str] = []
|
|
rating_tags: list[str] = []
|
|
|
|
e621_dict = danbooru_to_e621_dict
|
|
for tag in tags:
|
|
tag = replace_underline(tag)
|
|
tag = danbooru_to_e621(tag, e621_dict)
|
|
if tag in PEOPLE_TAGS:
|
|
people_tags.append(tag)
|
|
elif tag in DANBOORU_TO_E621_RATING_MAP.keys():
|
|
rating_tags.append(DANBOORU_TO_E621_RATING_MAP.get(tag.replace(" ",""), ""))
|
|
else:
|
|
other_tags.append(tag)
|
|
|
|
rating_tags = sorted(set(rating_tags), key=rating_tags.index)
|
|
rating_tags = [rating_tags[0]] if rating_tags else []
|
|
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
|
|
|
|
output_prompt = ", ".join(people_tags + other_tags + rating_tags)
|
|
|
|
return output_prompt
|
|
|
|
|
|
from translatepy import Translator
|
|
translator = Translator()
|
|
def translate_prompt_old(prompt: str = ""):
|
|
def translate_to_english(input: str):
|
|
try:
|
|
output = str(translator.translate(input, 'English'))
|
|
except Exception as e:
|
|
output = input
|
|
print(e)
|
|
return output
|
|
|
|
def is_japanese(s):
|
|
import unicodedata
|
|
for ch in s:
|
|
name = unicodedata.name(ch, "")
|
|
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
|
|
return True
|
|
return False
|
|
|
|
def to_list(s):
|
|
return [x.strip() for x in s.split(",")]
|
|
|
|
prompts = to_list(prompt)
|
|
outputs = []
|
|
for p in prompts:
|
|
p = translate_to_english(p) if is_japanese(p) else p
|
|
outputs.append(p)
|
|
|
|
return ", ".join(outputs)
|
|
|
|
|
|
def translate_prompt(input: str):
|
|
try:
|
|
output = str(translator.translate(input, 'English'))
|
|
except Exception as e:
|
|
output = input
|
|
print(e)
|
|
return output
|
|
|
|
|
|
def translate_prompt_to_ja(prompt: str = ""):
|
|
def translate_to_japanese(input: str):
|
|
try:
|
|
output = str(translator.translate(input, 'Japanese'))
|
|
except Exception as e:
|
|
output = input
|
|
print(e)
|
|
return output
|
|
|
|
def is_japanese(s):
|
|
import unicodedata
|
|
for ch in s:
|
|
name = unicodedata.name(ch, "")
|
|
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
|
|
return True
|
|
return False
|
|
|
|
def to_list(s):
|
|
return [x.strip() for x in s.split(",")]
|
|
|
|
prompts = to_list(prompt)
|
|
outputs = []
|
|
for p in prompts:
|
|
p = translate_to_japanese(p) if not is_japanese(p) else p
|
|
outputs.append(p)
|
|
|
|
return ", ".join(outputs)
|
|
|
|
|
|
def tags_to_ja(itag, dict):
|
|
def t_to_j(match, dict):
|
|
tag = match.group(0)
|
|
ja = dict.get(replace_underline(tag), "")
|
|
if ja:
|
|
return ja
|
|
else:
|
|
return tag
|
|
|
|
import re
|
|
tag = re.sub(r'[\w ]+', lambda wrapper: t_to_j(wrapper, dict), itag, 2)
|
|
|
|
return tag
|
|
|
|
|
|
def convert_tags_to_ja(input_prompt: str = ""):
|
|
tags = input_prompt.split(",") if input_prompt else []
|
|
out_tags = []
|
|
|
|
tags_to_ja_dict = load_dict_from_csv('all_tags_ja_ext.csv')
|
|
dict = tags_to_ja_dict
|
|
for tag in tags:
|
|
tag = replace_underline(tag)
|
|
tag = tags_to_ja(tag, dict)
|
|
out_tags.append(tag)
|
|
|
|
return ", ".join(out_tags)
|
|
|
|
|
|
enable_auto_recom_prompt = True
|
|
|
|
|
|
animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
|
|
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
|
|
pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
|
|
pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
|
|
other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
|
|
other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
|
|
default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
|
|
default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
|
|
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
|
|
global enable_auto_recom_prompt
|
|
prompts = to_list(prompt)
|
|
neg_prompts = to_list(neg_prompt)
|
|
|
|
prompts = list_sub(prompts, animagine_ps + pony_ps)
|
|
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps)
|
|
|
|
last_empty_p = [""] if not prompts and type != "None" else []
|
|
last_empty_np = [""] if not neg_prompts and type != "None" else []
|
|
|
|
if type == "Auto":
|
|
enable_auto_recom_prompt = True
|
|
else:
|
|
enable_auto_recom_prompt = False
|
|
if type == "Animagine":
|
|
prompts = prompts + animagine_ps
|
|
neg_prompts = neg_prompts + animagine_nps
|
|
elif type == "Pony":
|
|
prompts = prompts + pony_ps
|
|
neg_prompts = neg_prompts + pony_nps
|
|
|
|
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
|
|
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
|
|
|
|
return prompt, neg_prompt
|
|
|
|
|
|
def load_model_prompt_dict():
|
|
import json
|
|
dict = {}
|
|
path = 'model_dict.json' if Path('model_dict.json').exists() else './tagger/model_dict.json'
|
|
try:
|
|
with open('model_dict.json', encoding='utf-8') as f:
|
|
dict = json.load(f)
|
|
except Exception:
|
|
pass
|
|
return dict
|
|
|
|
|
|
model_prompt_dict = load_model_prompt_dict()
|
|
|
|
|
|
def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
|
|
if not model_name or not enable_auto_recom_prompt: return prompt, neg_prompt
|
|
prompts = to_list(prompt)
|
|
neg_prompts = to_list(neg_prompt)
|
|
prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
|
|
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
|
|
last_empty_p = [""] if not prompts and type != "None" else []
|
|
last_empty_np = [""] if not neg_prompts and type != "None" else []
|
|
ps = []
|
|
nps = []
|
|
if model_name in model_prompt_dict.keys():
|
|
ps = to_list(model_prompt_dict[model_name]["prompt"])
|
|
nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
|
|
else:
|
|
ps = default_ps
|
|
nps = default_nps
|
|
prompts = prompts + ps
|
|
neg_prompts = neg_prompts + nps
|
|
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
|
|
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
|
|
return prompt, neg_prompt
|
|
|
|
|
|
tag_group_dict = load_dict_from_csv('tag_group.csv')
|
|
|
|
|
|
def remove_specific_prompt(input_prompt: str = "", keep_tags: str = "all"):
|
|
def is_dressed(tag):
|
|
import re
|
|
p = re.compile(r'dress|cloth|uniform|costume|vest|sweater|coat|shirt|jacket|blazer|apron|leotard|hood|sleeve|skirt|shorts|pant|loafer|ribbon|necktie|bow|collar|glove|sock|shoe|boots|wear|emblem')
|
|
return p.search(tag)
|
|
|
|
def is_background(tag):
|
|
import re
|
|
p = re.compile(r'background|outline|light|sky|build|day|screen|tree|city')
|
|
return p.search(tag)
|
|
|
|
un_tags = ['solo']
|
|
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
|
|
keep_group_dict = {
|
|
"body": ['groups', 'body_parts'],
|
|
"dress": ['groups', 'body_parts', 'attire'],
|
|
"all": group_list,
|
|
}
|
|
|
|
def is_necessary(tag, keep_tags, group_dict):
|
|
if keep_tags == "all":
|
|
return True
|
|
elif tag in un_tags or group_dict.get(tag, "") in explicit_group:
|
|
return False
|
|
elif keep_tags == "body" and is_dressed(tag):
|
|
return False
|
|
elif is_background(tag):
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
if keep_tags == "all": return input_prompt
|
|
keep_group = keep_group_dict.get(keep_tags, keep_group_dict["body"])
|
|
explicit_group = list(set(group_list) ^ set(keep_group))
|
|
|
|
tags = input_prompt.split(",") if input_prompt else []
|
|
people_tags: list[str] = []
|
|
other_tags: list[str] = []
|
|
|
|
group_dict = tag_group_dict
|
|
for tag in tags:
|
|
tag = replace_underline(tag)
|
|
if tag in PEOPLE_TAGS:
|
|
people_tags.append(tag)
|
|
elif is_necessary(tag, keep_tags, group_dict):
|
|
other_tags.append(tag)
|
|
|
|
output_prompt = ", ".join(people_tags + other_tags)
|
|
|
|
return output_prompt
|
|
|
|
|
|
def sort_taglist(tags: list[str]):
|
|
if not tags: return []
|
|
character_tags: list[str] = []
|
|
series_tags: list[str] = []
|
|
people_tags: list[str] = []
|
|
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
|
|
group_tags = {}
|
|
other_tags: list[str] = []
|
|
rating_tags: list[str] = []
|
|
|
|
group_dict = tag_group_dict
|
|
group_set = set(group_dict.keys())
|
|
character_set = set(anime_series_dict.keys())
|
|
series_set = set(anime_series_dict.values())
|
|
rating_set = set(DANBOORU_TO_E621_RATING_MAP.keys()) | set(DANBOORU_TO_E621_RATING_MAP.values())
|
|
|
|
for tag in tags:
|
|
tag = replace_underline(tag)
|
|
if tag in PEOPLE_TAGS:
|
|
people_tags.append(tag)
|
|
elif tag in rating_set:
|
|
rating_tags.append(tag)
|
|
elif tag in group_set:
|
|
elem = group_dict[tag]
|
|
group_tags[elem] = group_tags[elem] + [tag] if elem in group_tags else [tag]
|
|
elif tag in character_set:
|
|
character_tags.append(tag)
|
|
elif tag in series_set:
|
|
series_tags.append(tag)
|
|
else:
|
|
other_tags.append(tag)
|
|
|
|
output_group_tags: list[str] = []
|
|
for k in group_list:
|
|
output_group_tags.extend(group_tags.get(k, []))
|
|
|
|
rating_tags = [rating_tags[0]] if rating_tags else []
|
|
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
|
|
|
|
output_tags = character_tags + series_tags + people_tags + output_group_tags + other_tags + rating_tags
|
|
|
|
return output_tags
|
|
|
|
|
|
def sort_tags(tags: str):
|
|
if not tags: return ""
|
|
taglist: list[str] = []
|
|
for tag in tags.split(","):
|
|
taglist.append(tag.strip())
|
|
taglist = list(filter(lambda x: x != "", taglist))
|
|
return ", ".join(sort_taglist(taglist))
|
|
|
|
|
|
def postprocess_results(results: dict[str, float], general_threshold: float, character_threshold: float):
|
|
results = {
|
|
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
|
|
}
|
|
|
|
rating = {}
|
|
character = {}
|
|
general = {}
|
|
|
|
for k, v in results.items():
|
|
if k.startswith("rating:"):
|
|
rating[k.replace("rating:", "")] = v
|
|
continue
|
|
elif k.startswith("character:"):
|
|
character[k.replace("character:", "")] = v
|
|
continue
|
|
|
|
general[k] = v
|
|
|
|
character = {k: v for k, v in character.items() if v >= character_threshold}
|
|
general = {k: v for k, v in general.items() if v >= general_threshold}
|
|
|
|
return rating, character, general
|
|
|
|
|
|
def gen_prompt(rating: list[str], character: list[str], general: list[str]):
|
|
people_tags: list[str] = []
|
|
other_tags: list[str] = []
|
|
rating_tag = RATING_MAP[rating[0]]
|
|
|
|
for tag in general:
|
|
if tag in PEOPLE_TAGS:
|
|
people_tags.append(tag)
|
|
else:
|
|
other_tags.append(tag)
|
|
|
|
all_tags = people_tags + other_tags
|
|
|
|
return ", ".join(all_tags)
|
|
|
|
|
|
@spaces.GPU(duration=30)
|
|
def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
|
|
inputs = wd_processor.preprocess(image, return_tensors="pt")
|
|
|
|
outputs = wd_model(**inputs.to(wd_model.device, wd_model.dtype))
|
|
logits = torch.sigmoid(outputs.logits[0])
|
|
|
|
|
|
if device != default_device: wd_model.to(device=device)
|
|
results = {
|
|
wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
|
|
}
|
|
if device != default_device: wd_model.to(device=default_device)
|
|
|
|
rating, character, general = postprocess_results(
|
|
results, general_threshold, character_threshold
|
|
)
|
|
prompt = gen_prompt(
|
|
list(rating.keys()), list(character.keys()), list(general.keys())
|
|
)
|
|
output_series_tag = ""
|
|
output_series_list = character_list_to_series_list(character.keys())
|
|
if output_series_list:
|
|
output_series_tag = output_series_list[0]
|
|
else:
|
|
output_series_tag = ""
|
|
return output_series_tag, ", ".join(character.keys()), prompt, gr.update(interactive=True)
|
|
|
|
|
|
def predict_tags_wd(image: Image.Image, input_tags: str, algo: list[str], general_threshold: float = 0.3,
|
|
character_threshold: float = 0.8, input_series: str = "", input_character: str = ""):
|
|
if not "Use WD Tagger" in algo and len(algo) != 0:
|
|
return input_series, input_character, input_tags, gr.update(interactive=True)
|
|
return predict_tags(image, general_threshold, character_threshold)
|
|
|
|
|
|
def compose_prompt_to_copy(character: str, series: str, general: str):
|
|
characters = character.split(",") if character else []
|
|
serieses = series.split(",") if series else []
|
|
generals = general.split(",") if general else []
|
|
tags = characters + serieses + generals
|
|
cprompt = ",".join(tags) if tags else ""
|
|
return cprompt
|
|
|