t2i-multi-heavy-demo / multit2i.py
John6666's picture
Upload 11 files
cc6e31a verified
raw
history blame
13.7 kB
import gradio as gr
import asyncio
import queue
from threading import RLock
from pathlib import Path
lock = RLock()
loaded_models = {}
model_info_dict = {}
def to_list(s):
return [x.strip() for x in s.split(",")]
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30):
from huggingface_hub import HfApi
api = HfApi()
default_tags = ["diffusers"]
if not sort: sort = "last_modified"
models = []
try:
model_infos = api.list_models(author=author, pipeline_tag="text-to-image",
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit * 5)
except Exception as e:
print(f"Error: Failed to list models.")
print(e)
return models
for model in model_infos:
if not model.private and not model.gated:
if not_tag and not_tag in model.tags: continue
models.append(model.id)
if len(models) == limit: break
return models
def get_t2i_model_info_dict(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
info = {"md": "None"}
try:
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
model = api.model_info(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
return info
if model.private or model.gated: return info
try:
tags = model.tags
except Exception as e:
print(e)
return info
if not 'diffusers' in model.tags: return info
if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
else: info["ver"] = "Other"
info["url"] = f"https://huggingface.co/{repo_id}/"
info["tags"] = model.card_data.tags if model.card_data and model.card_data.tags else []
info["downloads"] = model.downloads
info["likes"] = model.likes
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❀: {info["likes"]}'] + [info["last_modified"]]
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
return info
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
from datetime import datetime, timezone, timedelta
progress(0, desc="Updating gallery...")
dt_now = datetime.now(timezone(timedelta(hours=9)))
basename = dt_now.strftime('%Y%m%d_%H%M%S_')
i = 1
if not images: return images
output_images = []
output_paths = []
for image in images:
filename = f'{image[1]}_{basename}{str(i)}.png'
i += 1
oldpath = Path(image[0])
newpath = oldpath
try:
if oldpath.stem == "image" and oldpath.exists():
newpath = oldpath.resolve().rename(Path(filename).resolve())
except Exception as e:
print(e)
pass
finally:
output_paths.append(str(newpath))
output_images.append((str(newpath), str(filename)))
progress(1, desc="Gallery updated.")
return gr.update(value=output_images), gr.update(value=output_paths)
def load_from_model(model_name: str, hf_token: str = None):
import httpx
import huggingface_hub
from gradio.exceptions import ModelNotFoundError
model_url = f"https://huggingface.co/{model_name}"
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
print(f"Fetching model from: {model_url}")
headers = {"Authorization": f"Bearer {hf_token}"} if hf_token is not None else {}
response = httpx.request("GET", api_url, headers=headers)
if response.status_code != 200:
raise ModelNotFoundError(
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
)
headers["X-Wait-For-Model"] = "true"
client = huggingface_hub.InferenceClient(model=model_name, headers=headers, token=hf_token)
inputs = gr.components.Textbox(label="Input")
outputs = gr.components.Image(label="Output")
fn = client.text_to_image
def query_huggingface_inference_endpoints(*data):
return fn(*data)
interface_info = {
"fn": query_huggingface_inference_endpoints,
"inputs": inputs,
"outputs": outputs,
"title": model_name,
}
return gr.Interface(**interface_info)
def load_model(model_name: str):
global loaded_models
global model_info_dict
if model_name in loaded_models.keys(): return loaded_models[model_name]
try:
loaded_models[model_name] = load_from_model(model_name)
print(f"Loaded: {model_name}")
except Exception as e:
if model_name in loaded_models.keys(): del loaded_models[model_name]
print(f"Failed to load: {model_name}")
print(e)
return None
try:
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
print(f"Assigned: {model_name}")
except Exception as e:
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
print(f"Failed to assigned: {model_name}")
print(e)
return loaded_models[model_name]
async def async_load_models(models: list, limit: int=5):
sem = asyncio.Semaphore(limit)
async def async_load_model(model: str):
async with sem:
try:
return await asyncio.to_thread(load_model, model)
except Exception as e:
print(e)
tasks = [asyncio.create_task(async_load_model(model)) for model in models]
return await asyncio.gather(*tasks, return_exceptions=True)
def load_models(models: list, limit: int=5):
loop = asyncio.new_event_loop()
try:
loop.run_until_complete(async_load_models(models, limit))
except Exception as e:
print(e)
pass
finally:
loop.close()
positive_prefix = {
"Pony": to_list("score_9, score_8_up, score_7_up"),
"Pony Anime": to_list("source_anime, anime, score_9, score_8_up, score_7_up"),
}
positive_suffix = {
"Common": to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres"),
"Anime": to_list("anime artwork, anime style, studio anime, highly detailed"),
}
negative_prefix = {
"Pony": to_list("score_6, score_5, score_4"),
"Pony Anime": to_list("score_6, score_5, score_4, source_pony, source_furry, source_cartoon"),
"Pony Real": to_list("score_6, score_5, score_4, source_anime, source_pony, source_furry, source_cartoon"),
}
negative_suffix = {
"Common": to_list("lowres, (bad), bad hands, bad feet, text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]"),
"Pony Anime": to_list("busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends"),
"Pony Real": to_list("ugly, airbrushed, simple background, cgi, cartoon, anime"),
}
positive_all = negative_all = []
for k, v in (positive_prefix | positive_suffix).items():
positive_all = positive_all + v + [s.replace("_", " ") for s in v]
positive_all = list_uniq(positive_all)
for k, v in (negative_prefix | negative_suffix).items():
negative_all = negative_all + v + [s.replace("_", " ") for s in v]
positive_all = list_uniq(positive_all)
def recom_prompt(prompt: str = "", neg_prompt: str = "", pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
def flatten(src):
return [item for row in src for item in row]
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, positive_all)
neg_prompts = list_sub(neg_prompts, negative_all)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
prefix_ps = flatten([positive_prefix.get(s, []) for s in pos_pre])
suffix_ps = flatten([positive_suffix.get(s, []) for s in pos_suf])
prefix_nps = flatten([negative_prefix.get(s, []) for s in neg_pre])
suffix_nps = flatten([negative_suffix.get(s, []) for s in neg_suf])
prompt = ", ".join(list_uniq(prefix_ps + prompts + suffix_ps) + last_empty_p)
neg_prompt = ", ".join(list_uniq(prefix_nps + neg_prompts + suffix_nps) + last_empty_np)
return prompt, neg_prompt
recom_prompt_type = {
"None": ([], [], [], []),
"Auto": ([], [], [], []),
"Common": ([], ["Common"], [], ["Common"]),
"Animagine": ([], ["Common", "Anime"], [], ["Common"]),
"Pony": (["Pony"], ["Common"], ["Pony"], ["Common"]),
"Pony Anime": (["Pony", "Pony Anime"], ["Common", "Anime"], ["Pony", "Pony Anime"], ["Common", "Pony Anime"]),
"Pony Real": (["Pony"], ["Common"], ["Pony", "Pony Real"], ["Common", "Pony Real"]),
}
enable_auto_recom_prompt = False
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
global enable_auto_recom_prompt
if type == "Auto": enable_auto_recom_prompt = True
else: enable_auto_recom_prompt = False
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
return recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
def set_recom_prompt_preset(type: str = "None"):
pos_pre, pos_suf, neg_pre, neg_suf = recom_prompt_type.get(type, ([], [], [], []))
return pos_pre, pos_suf, neg_pre, neg_suf
def get_recom_prompt_type():
type = list(recom_prompt_type.keys())
type.remove("Auto")
return type
def get_positive_prefix():
return list(positive_prefix.keys())
def get_positive_suffix():
return list(positive_suffix.keys())
def get_negative_prefix():
return list(negative_prefix.keys())
def get_negative_suffix():
return list(negative_suffix.keys())
def get_tag_type(pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
tag_type = "danbooru"
words = pos_pre + pos_suf + neg_pre + neg_suf
for word in words:
if "Pony" in word:
tag_type = "e621"
break
return tag_type
def get_model_info_md(model_name: str):
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
def change_model(model_name: str):
load_model(model_name)
return get_model_info_md(model_name)
def infer(prompt: str, neg_prompt: str, model_name: str):
from PIL import Image
import random
seed = ""
rand = random.randint(1, 500)
for i in range(rand):
seed += " "
caption = model_name.split("/")[-1]
try:
model = load_model(model_name)
if not model: return (Image.Image(), None)
image_path = model(prompt + seed)
image = Image.open(image_path).convert('RGBA')
except Exception as e:
print(e)
return (Image.Image(), None)
return (image, caption)
async def infer_multi(prompt: str, neg_prompt: str, results: list, image_num: float, model_name: str,
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
from tqdm.asyncio import tqdm_asyncio
image_num = int(image_num)
images = results if results else []
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for i in range(image_num)]
#results = await asyncio.gather(*tasks, return_exceptions=True)
results = await tqdm_asyncio.gather(*tasks)
if not results: results = []
for result in results:
with lock:
if result and result[1]: images.append(result)
yield images
async def infer_multi_random(prompt: str, neg_prompt: str, results: list, image_num: float,
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
from tqdm.asyncio import tqdm_asyncio
import random
image_num = int(image_num)
images = results if results else []
random.seed()
model_names = random.choices(list(loaded_models.keys()), k = image_num)
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for model_name in model_names]
#results = await asyncio.gather(*tasks, return_exceptions=True)
results = await tqdm_asyncio.gather(*tasks)
if not results: results = []
for result in results:
with lock:
if result and result[1]: images.append(result)
yield images