Spaces:
Running
Running
Upload 5 files
Browse files- README.md +13 -12
- app.py +75 -0
- convert_url_to_diffusers_sd.py +307 -0
- convert_url_to_diffusers_sd_gr.py +366 -0
- requirements.txt +9 -0
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.38.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
1 |
+
---
|
2 |
+
title: SD To Diffusers V2
|
3 |
+
emoji: 🎨➡️🧨
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.38.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from convert_url_to_diffusers_sd_gr import (
|
3 |
+
convert_url_to_diffusers_repo,
|
4 |
+
SCHEDULER_CONFIG_MAP,
|
5 |
+
)
|
6 |
+
|
7 |
+
vaes = [
|
8 |
+
"",
|
9 |
+
"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt",
|
10 |
+
"https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt",
|
11 |
+
]
|
12 |
+
loras = [
|
13 |
+
"",
|
14 |
+
"https://huggingface.co/SPO-Diffusion-Models/SPO-SD-v1-5_4k-p_10ep_LoRA/blob/main/spo-sd-v1-5_4k-p_10ep_lora_diffusers.safetensors",
|
15 |
+
]
|
16 |
+
schedulers = list(SCHEDULER_CONFIG_MAP.keys())
|
17 |
+
|
18 |
+
css = """"""
|
19 |
+
|
20 |
+
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
|
21 |
+
gr.Markdown("# Download and convert any Stable Diffusion 1.5 / 2.0 safetensors to Diffusers and create your repo")
|
22 |
+
gr.Markdown(
|
23 |
+
f"""
|
24 |
+
**⚠️IMPORTANT NOTICE⚠️**<br>
|
25 |
+
From an information security standpoint, it is dangerous to expose your access token or key to others.
|
26 |
+
If you do use it, I recommend that you duplicate this space on your own account before doing so.
|
27 |
+
Keys and tokens could be set to SECRET (HF_TOKEN, CIVITAI_API_KEY) if it's placed in your own space.
|
28 |
+
It saves you the trouble of typing them in.<br>
|
29 |
+
<br>
|
30 |
+
**The steps are the following**:
|
31 |
+
- Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens).
|
32 |
+
- Input a model download url from the Hub or Civitai or other sites.
|
33 |
+
- If you want to download a model from Civitai, paste a Civitai API Key.
|
34 |
+
- Input your new repo name. e.g. 'yourid/newrepo'.
|
35 |
+
- Set the parameters. If not sure, just use the defaults.
|
36 |
+
- Click "Submit".
|
37 |
+
- Patiently wait until the output changes.
|
38 |
+
"""
|
39 |
+
)
|
40 |
+
with gr.Column():
|
41 |
+
dl_url = gr.Textbox(label="URL to download", placeholder="https://...", value="", max_lines=1)
|
42 |
+
repo_id = gr.Textbox(label="Your New Repo ID", placeholder="author/model", value="", max_lines=1)
|
43 |
+
hf_token = gr.Textbox(label="Your HF write token", placeholder="", value="", max_lines=1)
|
44 |
+
civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1)
|
45 |
+
is_half = gr.Checkbox(label="Half precision", value=True)
|
46 |
+
model_type = gr.Radio(label="Model type", choices=["v1", "v2"])
|
47 |
+
sample_size = gr.Radio(label="Sample size (px)", choices=[512, 768]),
|
48 |
+
ema = gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"], value="ema"),
|
49 |
+
vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True)
|
50 |
+
scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a")
|
51 |
+
lora1 = gr.Dropdown(label="LoRA1", choices=loras, value="", allow_custom_value=True)
|
52 |
+
lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
|
53 |
+
lora2 = gr.Dropdown(label="LoRA2", choices=loras, value="", allow_custom_value=True)
|
54 |
+
lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
|
55 |
+
lora3 = gr.Dropdown(label="LoRA3", choices=loras, value="", allow_custom_value=True)
|
56 |
+
lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
|
57 |
+
lora4 = gr.Dropdown(label="LoRA4", choices=loras, value="", allow_custom_value=True)
|
58 |
+
lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
|
59 |
+
lora5 = gr.Dropdown(label="LoRA5", choices=loras, value="", allow_custom_value=True)
|
60 |
+
lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
|
61 |
+
run_button = gr.Button(value="Submit")
|
62 |
+
repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=None)
|
63 |
+
output_md = gr.Markdown(label="Output")
|
64 |
+
|
65 |
+
gr.on(
|
66 |
+
triggers=[run_button.click],
|
67 |
+
fn=convert_url_to_diffusers_repo,
|
68 |
+
inputs=[dl_url, repo_id, hf_token, civitai_key, repo_urls, is_half, vae, scheduler,
|
69 |
+
lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s,
|
70 |
+
model_type, sample_size, ema],
|
71 |
+
outputs=[repo_urls, output_md],
|
72 |
+
)
|
73 |
+
|
74 |
+
demo.queue()
|
75 |
+
demo.launch()
|
convert_url_to_diffusers_sd.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from pathlib import Path
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
6 |
+
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
7 |
+
|
8 |
+
|
9 |
+
def list_sub(a, b):
|
10 |
+
return [e for e in a if e not in b]
|
11 |
+
|
12 |
+
|
13 |
+
def is_repo_name(s):
|
14 |
+
import re
|
15 |
+
return re.fullmatch(r'^[^/\.,\s]+?/[^/\.,\s]+?$', s)
|
16 |
+
|
17 |
+
|
18 |
+
def download_thing(directory, url, civitai_api_key=""):
|
19 |
+
url = url.strip()
|
20 |
+
if "drive.google.com" in url:
|
21 |
+
original_dir = os.getcwd()
|
22 |
+
os.chdir(directory)
|
23 |
+
os.system(f"gdown --fuzzy {url}")
|
24 |
+
os.chdir(original_dir)
|
25 |
+
elif "huggingface.co" in url:
|
26 |
+
url = url.replace("?download=true", "")
|
27 |
+
if "/blob/" in url:
|
28 |
+
url = url.replace("/blob/", "/resolve/")
|
29 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
30 |
+
else:
|
31 |
+
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
32 |
+
elif "civitai.com" in url:
|
33 |
+
if "?" in url:
|
34 |
+
url = url.split("?")[0]
|
35 |
+
if civitai_api_key:
|
36 |
+
url = url + f"?token={civitai_api_key}"
|
37 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
38 |
+
else:
|
39 |
+
print("You need an API key to download Civitai models.")
|
40 |
+
else:
|
41 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
42 |
+
|
43 |
+
|
44 |
+
def get_local_model_list(dir_path):
|
45 |
+
model_list = []
|
46 |
+
valid_extensions = ('.safetensors', '.ckpt', '.bin', '.pt', '.pth')
|
47 |
+
for file in Path(dir_path).glob("*"):
|
48 |
+
if file.suffix in valid_extensions:
|
49 |
+
file_path = str(Path(f"{dir_path}/{file.name}"))
|
50 |
+
model_list.append(file_path)
|
51 |
+
return model_list
|
52 |
+
|
53 |
+
|
54 |
+
def get_download_file(temp_dir, url, civitai_key):
|
55 |
+
if not "http" in url and is_repo_name(url) and not Path(url).exists():
|
56 |
+
print(f"Use HF Repo: {url}")
|
57 |
+
new_file = url
|
58 |
+
elif not "http" in url and Path(url).exists():
|
59 |
+
print(f"Use local file: {url}")
|
60 |
+
new_file = url
|
61 |
+
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
|
62 |
+
print(f"File to download alreday exists: {url}")
|
63 |
+
new_file = f"{temp_dir}/{url.split('/')[-1]}"
|
64 |
+
else:
|
65 |
+
print(f"Start downloading: {url}")
|
66 |
+
before = get_local_model_list(temp_dir)
|
67 |
+
try:
|
68 |
+
download_thing(temp_dir, url.strip(), civitai_key)
|
69 |
+
except Exception:
|
70 |
+
print(f"Download failed: {url}")
|
71 |
+
return ""
|
72 |
+
after = get_local_model_list(temp_dir)
|
73 |
+
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
|
74 |
+
if not new_file:
|
75 |
+
print(f"Download failed: {url}")
|
76 |
+
return ""
|
77 |
+
print(f"Download completed: {url}")
|
78 |
+
return new_file
|
79 |
+
|
80 |
+
|
81 |
+
from diffusers import (
|
82 |
+
DPMSolverMultistepScheduler,
|
83 |
+
DPMSolverSinglestepScheduler,
|
84 |
+
KDPM2DiscreteScheduler,
|
85 |
+
EulerDiscreteScheduler,
|
86 |
+
EulerAncestralDiscreteScheduler,
|
87 |
+
HeunDiscreteScheduler,
|
88 |
+
LMSDiscreteScheduler,
|
89 |
+
DDIMScheduler,
|
90 |
+
DEISMultistepScheduler,
|
91 |
+
UniPCMultistepScheduler,
|
92 |
+
LCMScheduler,
|
93 |
+
PNDMScheduler,
|
94 |
+
KDPM2AncestralDiscreteScheduler,
|
95 |
+
DPMSolverSDEScheduler,
|
96 |
+
EDMDPMSolverMultistepScheduler,
|
97 |
+
DDPMScheduler,
|
98 |
+
EDMEulerScheduler,
|
99 |
+
TCDScheduler,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
SCHEDULER_CONFIG_MAP = {
|
104 |
+
"DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
|
105 |
+
"DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
|
106 |
+
"DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
|
107 |
+
"DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
|
108 |
+
"DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
|
109 |
+
"DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
|
110 |
+
"DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
|
111 |
+
"DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
|
112 |
+
"DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
|
113 |
+
"DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
|
114 |
+
"DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
|
115 |
+
"DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
|
116 |
+
"DPM2": (KDPM2DiscreteScheduler, {}),
|
117 |
+
"DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
|
118 |
+
"DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
|
119 |
+
"DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
|
120 |
+
"Euler": (EulerDiscreteScheduler, {}),
|
121 |
+
"Euler a": (EulerAncestralDiscreteScheduler, {}),
|
122 |
+
"Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
|
123 |
+
"Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
|
124 |
+
"Heun": (HeunDiscreteScheduler, {}),
|
125 |
+
"Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
|
126 |
+
"LMS": (LMSDiscreteScheduler, {}),
|
127 |
+
"LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
|
128 |
+
"DDIM": (DDIMScheduler, {}),
|
129 |
+
"DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
|
130 |
+
"DEIS": (DEISMultistepScheduler, {}),
|
131 |
+
"UniPC": (UniPCMultistepScheduler, {}),
|
132 |
+
"UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
|
133 |
+
"PNDM": (PNDMScheduler, {}),
|
134 |
+
"Euler EDM": (EDMEulerScheduler, {}),
|
135 |
+
"Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
|
136 |
+
"DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
137 |
+
"DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
138 |
+
"DDPM": (DDPMScheduler, {}),
|
139 |
+
|
140 |
+
"DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
|
141 |
+
"DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
|
142 |
+
"DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
|
143 |
+
"DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
|
144 |
+
|
145 |
+
"LCM": (LCMScheduler, {}),
|
146 |
+
"TCD": (TCDScheduler, {}),
|
147 |
+
"LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
|
148 |
+
"TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
|
149 |
+
"LCM Auto-Loader": (LCMScheduler, {}),
|
150 |
+
"TCD Auto-Loader": (TCDScheduler, {}),
|
151 |
+
}
|
152 |
+
|
153 |
+
|
154 |
+
def get_scheduler_config(name):
|
155 |
+
if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
|
156 |
+
return SCHEDULER_CONFIG_MAP[name]
|
157 |
+
|
158 |
+
|
159 |
+
def save_readme_md(dir, url):
|
160 |
+
orig_url = ""
|
161 |
+
orig_name = ""
|
162 |
+
if is_repo_name(url):
|
163 |
+
orig_name = url
|
164 |
+
orig_url = f"https://huggingface.co/{url}/"
|
165 |
+
elif "http" in url:
|
166 |
+
orig_name = url
|
167 |
+
orig_url = url
|
168 |
+
if orig_name and orig_url:
|
169 |
+
md = f"""---
|
170 |
+
license: other
|
171 |
+
tags:
|
172 |
+
- text-to-image
|
173 |
+
---
|
174 |
+
Converted from [{orig_name}]({orig_url}).
|
175 |
+
"""
|
176 |
+
else:
|
177 |
+
md = f"""---
|
178 |
+
license: other
|
179 |
+
tags:
|
180 |
+
- text-to-image
|
181 |
+
---
|
182 |
+
"""
|
183 |
+
path = str(Path(dir, "README.md"))
|
184 |
+
with open(path, mode='w', encoding="utf-8") as f:
|
185 |
+
f.write(md)
|
186 |
+
|
187 |
+
|
188 |
+
def fuse_loras(pipe, civitai_key="", lora_dict={}, temp_dir="."):
|
189 |
+
if not lora_dict or not isinstance(lora_dict, dict): return
|
190 |
+
a_list = []
|
191 |
+
w_list = []
|
192 |
+
for k, v in lora_dict.items():
|
193 |
+
new_lora_file = get_download_file(temp_dir, k, civitai_key)
|
194 |
+
if not new_lora_file or not Path(new_lora_file).exists():
|
195 |
+
print(f"LoRA not found: {k}")
|
196 |
+
continue
|
197 |
+
w_name = Path(new_lora_file).name
|
198 |
+
a_name = Path(new_lora_file).stem
|
199 |
+
pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
|
200 |
+
a_list.append(a_name)
|
201 |
+
w_list.append(v)
|
202 |
+
pipe.set_adapters(a_list, adapter_weights=w_list)
|
203 |
+
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
|
204 |
+
pipe.unload_lora_weights()
|
205 |
+
|
206 |
+
|
207 |
+
def convert_url_to_diffusers_sd(url, civitai_key="", half=True, vae=None, scheduler="Euler", lora_dict={},
|
208 |
+
model_type="v1", sample_size=512, ema="ema"):
|
209 |
+
temp_dir = "."
|
210 |
+
new_file = get_download_file(temp_dir, url, civitai_key)
|
211 |
+
if not new_file:
|
212 |
+
print(f"Not found: {url}")
|
213 |
+
return ""
|
214 |
+
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
215 |
+
|
216 |
+
extract_ema = True if ema == "ema" else False
|
217 |
+
|
218 |
+
if model_type == "v1": #
|
219 |
+
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
220 |
+
elif model_type == "v2":
|
221 |
+
if sample_size == 512:
|
222 |
+
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
|
223 |
+
else:
|
224 |
+
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
|
225 |
+
|
226 |
+
pipe = None
|
227 |
+
if is_repo_name(new_file):
|
228 |
+
if half:
|
229 |
+
pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
|
230 |
+
else:
|
231 |
+
pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
|
232 |
+
else:
|
233 |
+
if half:
|
234 |
+
pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
|
235 |
+
else:
|
236 |
+
pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
|
237 |
+
|
238 |
+
new_vae_file = ""
|
239 |
+
if vae:
|
240 |
+
if is_repo_name(vae):
|
241 |
+
if half:
|
242 |
+
pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
|
243 |
+
else:
|
244 |
+
pipe.vae = AutoencoderKL.from_pretrained(vae)
|
245 |
+
else:
|
246 |
+
new_vae_file = get_download_file(temp_dir, vae, civitai_key)
|
247 |
+
if new_vae_file and half:
|
248 |
+
pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
|
249 |
+
elif new_vae_file:
|
250 |
+
pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
|
251 |
+
|
252 |
+
fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
|
253 |
+
|
254 |
+
sconf = get_scheduler_config(scheduler)
|
255 |
+
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
256 |
+
|
257 |
+
if half:
|
258 |
+
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
259 |
+
else:
|
260 |
+
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
261 |
+
|
262 |
+
if Path(new_repo_name).exists():
|
263 |
+
save_readme_md(new_repo_name, url)
|
264 |
+
|
265 |
+
return new_repo_name
|
266 |
+
|
267 |
+
|
268 |
+
if __name__ == "__main__":
|
269 |
+
parser = argparse.ArgumentParser()
|
270 |
+
|
271 |
+
parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
|
272 |
+
parser.add_argument("--half", default=True, help="Save weights in half precision.")
|
273 |
+
parser.add_argument("--model_type", default="v1", type=str, choices=["v1", "v2"], required=False, help="Extract EMA or non-EMA?")
|
274 |
+
parser.add_argument("--sample_size", default=512, type=int, choices=[512, 768], required=False, help="Sample size (px)")
|
275 |
+
parser.add_argument("--ema", default="ema", type=str, choices=["ema", "non-ema"], required=False, help="Extract EMA or non-EMA?")
|
276 |
+
parser.add_argument("--scheduler", default="Euler", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
|
277 |
+
parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
|
278 |
+
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
|
279 |
+
parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
280 |
+
parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
|
281 |
+
parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
282 |
+
parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
|
283 |
+
parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
284 |
+
parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
|
285 |
+
parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
286 |
+
parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
|
287 |
+
parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
288 |
+
parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
|
289 |
+
parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
|
290 |
+
|
291 |
+
args = parser.parse_args()
|
292 |
+
assert args.url is not None, "Must provide a URL!"
|
293 |
+
|
294 |
+
lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
|
295 |
+
if None in lora_dict.keys(): del lora_dict[None]
|
296 |
+
|
297 |
+
if args.loras and Path(args.loras).exists():
|
298 |
+
for p in Path(args.loras).glob('**/*.safetensors'):
|
299 |
+
lora_dict[str(p)] = 1.0
|
300 |
+
|
301 |
+
convert_url_to_diffusers_sd(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict,
|
302 |
+
args.model_type, args.sample_size, args.ema)
|
303 |
+
|
304 |
+
|
305 |
+
# Usage: python convert_url_to_diffusers_sd.py --url https://huggingface.co/Yntec/DreamPhotoGASM/blob/main/DreamPhotoGASM.safetensors
|
306 |
+
# python convert_url_to_diffusers_sd.py --url https://huggingface.co/Yntec/DreamPhotoGASM/blob/main/DreamPhotoGASM.safetensors --scheduler "Euler a"
|
307 |
+
# python convert_url_to_diffusers_sd.py --url https://huggingface.co/Yntec/DreamPhotoGASM/blob/main/DreamPhotoGASM.safetensors --loras ./loras
|
convert_url_to_diffusers_sd_gr.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from pathlib import Path
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
6 |
+
import gradio as gr
|
7 |
+
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
8 |
+
|
9 |
+
|
10 |
+
def list_sub(a, b):
|
11 |
+
return [e for e in a if e not in b]
|
12 |
+
|
13 |
+
|
14 |
+
def is_repo_name(s):
|
15 |
+
import re
|
16 |
+
return re.fullmatch(r'^[^/\.,\s]+?/[^/\.,\s]+?$', s)
|
17 |
+
|
18 |
+
|
19 |
+
def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)):
|
20 |
+
url = url.strip()
|
21 |
+
if "drive.google.com" in url:
|
22 |
+
original_dir = os.getcwd()
|
23 |
+
os.chdir(directory)
|
24 |
+
os.system(f"gdown --fuzzy {url}")
|
25 |
+
os.chdir(original_dir)
|
26 |
+
elif "huggingface.co" in url:
|
27 |
+
url = url.replace("?download=true", "")
|
28 |
+
if "/blob/" in url:
|
29 |
+
url = url.replace("/blob/", "/resolve/")
|
30 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
31 |
+
else:
|
32 |
+
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
33 |
+
elif "civitai.com" in url:
|
34 |
+
if "?" in url:
|
35 |
+
url = url.split("?")[0]
|
36 |
+
if civitai_api_key:
|
37 |
+
url = url + f"?token={civitai_api_key}"
|
38 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
39 |
+
else:
|
40 |
+
print("You need an API key to download Civitai models.")
|
41 |
+
else:
|
42 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
43 |
+
|
44 |
+
|
45 |
+
def get_local_model_list(dir_path):
|
46 |
+
model_list = []
|
47 |
+
valid_extensions = ('.safetensors', '.ckpt', '.bin', '.pt', '.pth')
|
48 |
+
for file in Path(dir_path).glob("*"):
|
49 |
+
if file.suffix in valid_extensions:
|
50 |
+
file_path = str(Path(f"{dir_path}/{file.name}"))
|
51 |
+
model_list.append(file_path)
|
52 |
+
return model_list
|
53 |
+
|
54 |
+
|
55 |
+
def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
|
56 |
+
if not "http" in url and is_repo_name(url) and not Path(url).exists():
|
57 |
+
print(f"Use HF Repo: {url}")
|
58 |
+
new_file = url
|
59 |
+
elif not "http" in url and Path(url).exists():
|
60 |
+
print(f"Use local file: {url}")
|
61 |
+
new_file = url
|
62 |
+
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
|
63 |
+
print(f"File to download alreday exists: {url}")
|
64 |
+
new_file = f"{temp_dir}/{url.split('/')[-1]}"
|
65 |
+
else:
|
66 |
+
print(f"Start downloading: {url}")
|
67 |
+
before = get_local_model_list(temp_dir)
|
68 |
+
try:
|
69 |
+
download_thing(temp_dir, url.strip(), civitai_key)
|
70 |
+
except Exception:
|
71 |
+
print(f"Download failed: {url}")
|
72 |
+
return ""
|
73 |
+
after = get_local_model_list(temp_dir)
|
74 |
+
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
|
75 |
+
if not new_file:
|
76 |
+
print(f"Download failed: {url}")
|
77 |
+
return ""
|
78 |
+
print(f"Download completed: {url}")
|
79 |
+
return new_file
|
80 |
+
|
81 |
+
|
82 |
+
from diffusers import (
|
83 |
+
DPMSolverMultistepScheduler,
|
84 |
+
DPMSolverSinglestepScheduler,
|
85 |
+
KDPM2DiscreteScheduler,
|
86 |
+
EulerDiscreteScheduler,
|
87 |
+
EulerAncestralDiscreteScheduler,
|
88 |
+
HeunDiscreteScheduler,
|
89 |
+
LMSDiscreteScheduler,
|
90 |
+
DDIMScheduler,
|
91 |
+
DEISMultistepScheduler,
|
92 |
+
UniPCMultistepScheduler,
|
93 |
+
LCMScheduler,
|
94 |
+
PNDMScheduler,
|
95 |
+
KDPM2AncestralDiscreteScheduler,
|
96 |
+
DPMSolverSDEScheduler,
|
97 |
+
EDMDPMSolverMultistepScheduler,
|
98 |
+
DDPMScheduler,
|
99 |
+
EDMEulerScheduler,
|
100 |
+
TCDScheduler,
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
SCHEDULER_CONFIG_MAP = {
|
105 |
+
"DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
|
106 |
+
"DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
|
107 |
+
"DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
|
108 |
+
"DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
|
109 |
+
"DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
|
110 |
+
"DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
|
111 |
+
"DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
|
112 |
+
"DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
|
113 |
+
"DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
|
114 |
+
"DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
|
115 |
+
"DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
|
116 |
+
"DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
|
117 |
+
"DPM2": (KDPM2DiscreteScheduler, {}),
|
118 |
+
"DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
|
119 |
+
"DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
|
120 |
+
"DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
|
121 |
+
"Euler": (EulerDiscreteScheduler, {}),
|
122 |
+
"Euler a": (EulerAncestralDiscreteScheduler, {}),
|
123 |
+
"Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
|
124 |
+
"Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
|
125 |
+
"Heun": (HeunDiscreteScheduler, {}),
|
126 |
+
"Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
|
127 |
+
"LMS": (LMSDiscreteScheduler, {}),
|
128 |
+
"LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
|
129 |
+
"DDIM": (DDIMScheduler, {}),
|
130 |
+
"DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
|
131 |
+
"DEIS": (DEISMultistepScheduler, {}),
|
132 |
+
"UniPC": (UniPCMultistepScheduler, {}),
|
133 |
+
"UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
|
134 |
+
"PNDM": (PNDMScheduler, {}),
|
135 |
+
"Euler EDM": (EDMEulerScheduler, {}),
|
136 |
+
"Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
|
137 |
+
"DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
138 |
+
"DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
|
139 |
+
"DDPM": (DDPMScheduler, {}),
|
140 |
+
|
141 |
+
"DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
|
142 |
+
"DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
|
143 |
+
"DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
|
144 |
+
"DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
|
145 |
+
|
146 |
+
"LCM": (LCMScheduler, {}),
|
147 |
+
"TCD": (TCDScheduler, {}),
|
148 |
+
"LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
|
149 |
+
"TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
|
150 |
+
"LCM Auto-Loader": (LCMScheduler, {}),
|
151 |
+
"TCD Auto-Loader": (TCDScheduler, {}),
|
152 |
+
}
|
153 |
+
|
154 |
+
|
155 |
+
def get_scheduler_config(name):
|
156 |
+
if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler"]
|
157 |
+
return SCHEDULER_CONFIG_MAP[name]
|
158 |
+
|
159 |
+
|
160 |
+
def save_readme_md(dir, url):
|
161 |
+
orig_url = ""
|
162 |
+
orig_name = ""
|
163 |
+
if is_repo_name(url):
|
164 |
+
orig_name = url
|
165 |
+
orig_url = f"https://huggingface.co/{url}/"
|
166 |
+
elif "http" in url:
|
167 |
+
orig_name = url
|
168 |
+
orig_url = url
|
169 |
+
if orig_name and orig_url:
|
170 |
+
md = f"""---
|
171 |
+
license: other
|
172 |
+
tags:
|
173 |
+
- text-to-image
|
174 |
+
---
|
175 |
+
Converted from [{orig_name}]({orig_url}).
|
176 |
+
"""
|
177 |
+
else:
|
178 |
+
md = f"""---
|
179 |
+
license: other
|
180 |
+
tags:
|
181 |
+
- text-to-image
|
182 |
+
---
|
183 |
+
"""
|
184 |
+
path = str(Path(dir, "README.md"))
|
185 |
+
with open(path, mode='w', encoding="utf-8") as f:
|
186 |
+
f.write(md)
|
187 |
+
|
188 |
+
|
189 |
+
def fuse_loras(pipe, lora_dict={}, temp_dir=".", civitai_key=""):
|
190 |
+
if not lora_dict or not isinstance(lora_dict, dict): return
|
191 |
+
a_list = []
|
192 |
+
w_list = []
|
193 |
+
for k, v in lora_dict.items():
|
194 |
+
new_lora_file = get_download_file(temp_dir, k, civitai_key)
|
195 |
+
if not new_lora_file or not Path(new_lora_file).exists():
|
196 |
+
print(f"LoRA not found: {k}")
|
197 |
+
continue
|
198 |
+
w_name = Path(new_lora_file).name
|
199 |
+
a_name = Path(new_lora_file).stem
|
200 |
+
pipe.load_lora_weights(new_lora_file, weight_name = w_name, adapter_name = a_name)
|
201 |
+
a_list.append(a_name)
|
202 |
+
w_list.append(v)
|
203 |
+
pipe.set_adapters(a_list, adapter_weights=w_list)
|
204 |
+
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
|
205 |
+
pipe.unload_lora_weights()
|
206 |
+
|
207 |
+
|
208 |
+
def convert_url_to_diffusers_sd(url, civitai_key="", half=True, vae=None, scheduler="Euler", lora_dict={},
|
209 |
+
model_type="v1", sample_size=512, ema="ema", progress=gr.Progress(track_tqdm=True)):
|
210 |
+
progress(0, desc="Start converting...")
|
211 |
+
temp_dir = "."
|
212 |
+
new_file = get_download_file(temp_dir, url, civitai_key)
|
213 |
+
if not new_file:
|
214 |
+
print(f"Not found: {url}")
|
215 |
+
return ""
|
216 |
+
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
217 |
+
if not is_repo_name(new_file): return ""
|
218 |
+
|
219 |
+
extract_ema = True if ema == "ema" else False
|
220 |
+
|
221 |
+
if model_type == "v1": #
|
222 |
+
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
223 |
+
elif model_type == "v2":
|
224 |
+
if sample_size == 512:
|
225 |
+
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
|
226 |
+
else:
|
227 |
+
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
|
228 |
+
|
229 |
+
pipe = None
|
230 |
+
if is_repo_name(new_file):
|
231 |
+
if half:
|
232 |
+
pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
|
233 |
+
else:
|
234 |
+
pipe = StableDiffusionPipeline.from_pretrained(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
|
235 |
+
else:
|
236 |
+
if half:
|
237 |
+
pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True, torch_dtype=torch.float16)
|
238 |
+
else:
|
239 |
+
pipe = StableDiffusionPipeline.from_single_file(new_file, extract_ema=extract_ema, requires_safety_checker=False, use_safetensors=True)
|
240 |
+
|
241 |
+
new_vae_file = ""
|
242 |
+
if vae:
|
243 |
+
if is_repo_name(vae):
|
244 |
+
if half:
|
245 |
+
pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
|
246 |
+
else:
|
247 |
+
pipe.vae = AutoencoderKL.from_pretrained(vae)
|
248 |
+
else:
|
249 |
+
new_vae_file = get_download_file(temp_dir, vae, civitai_key)
|
250 |
+
if new_vae_file and half:
|
251 |
+
pipe.vae = AutoencoderKL.from_single_file(new_vae_file, torch_dtype=torch.float16)
|
252 |
+
elif new_vae_file:
|
253 |
+
pipe.vae = AutoencoderKL.from_single_file(new_vae_file)
|
254 |
+
|
255 |
+
fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
|
256 |
+
|
257 |
+
sconf = get_scheduler_config(scheduler)
|
258 |
+
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
259 |
+
|
260 |
+
if half:
|
261 |
+
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
262 |
+
else:
|
263 |
+
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
264 |
+
|
265 |
+
if Path(new_repo_name).exists():
|
266 |
+
save_readme_md(new_repo_name, url)
|
267 |
+
|
268 |
+
progress(1, desc="Converted.")
|
269 |
+
return new_repo_name
|
270 |
+
|
271 |
+
|
272 |
+
def is_repo_exists(repo_id):
|
273 |
+
from huggingface_hub import HfApi
|
274 |
+
api = HfApi()
|
275 |
+
try:
|
276 |
+
if api.repo_exists(repo_id=repo_id): return True
|
277 |
+
else: return False
|
278 |
+
except Exception as e:
|
279 |
+
print(f"Error: Failed to connect {repo_id}. ")
|
280 |
+
return True # for safe
|
281 |
+
|
282 |
+
|
283 |
+
def create_diffusers_repo(new_repo_id, diffusers_folder, progress=gr.Progress(track_tqdm=True)):
|
284 |
+
from huggingface_hub import HfApi
|
285 |
+
import os
|
286 |
+
hf_token = os.environ.get("HF_TOKEN")
|
287 |
+
api = HfApi()
|
288 |
+
try:
|
289 |
+
progress(0, desc="Start uploading...")
|
290 |
+
api.create_repo(repo_id=new_repo_id, token=hf_token)
|
291 |
+
for path in Path(diffusers_folder).glob("*"):
|
292 |
+
if path.is_dir():
|
293 |
+
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
|
294 |
+
elif path.is_file():
|
295 |
+
api.upload_file(repo_id=new_repo_id, path_or_fileobj=str(path), path_in_repo=path.name, token=hf_token)
|
296 |
+
progress(1, desc="Uploaded.")
|
297 |
+
url = f"https://huggingface.co/{new_repo_id}"
|
298 |
+
except Exception as e:
|
299 |
+
print(f"Error: Failed to upload to {new_repo_id}. ")
|
300 |
+
return ""
|
301 |
+
return url
|
302 |
+
|
303 |
+
|
304 |
+
def convert_url_to_diffusers_repo(dl_url, new_repo_id, hf_token, civitai_key="", repo_urls=[], half=True, vae=None,
|
305 |
+
scheduler="Euler a", lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
|
306 |
+
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0,
|
307 |
+
model_type="v1", sample_size=512, ema="ema", progress=gr.Progress(track_tqdm=True)):
|
308 |
+
if hf_token and not os.environ.get("HF_TOKEN"): os.environ['HF_TOKEN'] = hf_token
|
309 |
+
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
|
310 |
+
if not is_repo_name(new_repo_id):
|
311 |
+
print(f"Invalid repo name: {new_repo_id}")
|
312 |
+
progress(1, desc=f"Invalid repo name: {new_repo_id}")
|
313 |
+
return ""
|
314 |
+
if is_repo_exists(new_repo_id):
|
315 |
+
print(f"Repo already exists: {new_repo_id}")
|
316 |
+
progress(1, desc=f"Repo already exists: {new_repo_id}")
|
317 |
+
return ""
|
318 |
+
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
319 |
+
if None in lora_dict.keys(): del lora_dict[None]
|
320 |
+
new_path = convert_url_to_diffusers_sd(dl_url, civitai_key, half, vae, scheduler, lora_dict,
|
321 |
+
model_type, sample_size, ema)
|
322 |
+
if not new_path: return ""
|
323 |
+
repo_url = create_diffusers_repo(new_repo_id, new_path)
|
324 |
+
if not repo_urls: repo_urls = []
|
325 |
+
repo_urls.append(repo_url)
|
326 |
+
md = "Your new repo:<br>"
|
327 |
+
for u in repo_urls:
|
328 |
+
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
329 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
|
330 |
+
|
331 |
+
|
332 |
+
if __name__ == "__main__":
|
333 |
+
parser = argparse.ArgumentParser()
|
334 |
+
|
335 |
+
parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
|
336 |
+
parser.add_argument("--half", default=True, help="Save weights in half precision.")
|
337 |
+
parser.add_argument("--model_type", default="v1", type=str, choices=["v1", "v2"], required=False, help="Extract EMA or non-EMA?")
|
338 |
+
parser.add_argument("--sample_size", default=512, type=int, choices=[512, 768], required=False, help="Sample size (px)")
|
339 |
+
parser.add_argument("--ema", default="ema", type=str, choices=["ema", "non-ema"], required=False, help="Extract EMA or non-EMA?")
|
340 |
+
parser.add_argument("--scheduler", default="Euler", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
|
341 |
+
parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
|
342 |
+
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
|
343 |
+
parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
344 |
+
parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
|
345 |
+
parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
346 |
+
parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
|
347 |
+
parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
348 |
+
parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
|
349 |
+
parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
350 |
+
parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
|
351 |
+
parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
|
352 |
+
parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
|
353 |
+
parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
|
354 |
+
|
355 |
+
args = parser.parse_args()
|
356 |
+
assert args.url is not None, "Must provide a URL!"
|
357 |
+
|
358 |
+
lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
|
359 |
+
if None in lora_dict.keys(): del lora_dict[None]
|
360 |
+
|
361 |
+
if args.loras and Path(args.loras).exists():
|
362 |
+
for p in Path(args.loras).glob('**/*.safetensors'):
|
363 |
+
lora_dict[str(p)] = 1.0
|
364 |
+
|
365 |
+
convert_url_to_diffusers_sd(args.url, args.civitai_key, args.half, args.vae, args.scheduler, lora_dict,
|
366 |
+
args.model_type, args.sample_size, args.ema)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
safetensors
|
3 |
+
transformers
|
4 |
+
accelerate
|
5 |
+
git+https://github.com/huggingface/diffusers
|
6 |
+
pytorch_lightning
|
7 |
+
peft
|
8 |
+
aria2
|
9 |
+
gdown
|