John6666's picture
Upload app.py
7099cd8 verified
raw
history blame
7.64 kB
import gradio as gr
from pathlib import Path
loaded_models = {}
model_info_dict = {}
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30):
from huggingface_hub import HfApi
api = HfApi()
default_tags = ["diffusers"]
models = []
try:
model_infos = api.list_models(author=author, task="text-to-image", pipeline_tag="text-to-image",
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit * 5)
except Exception as e:
print(f"Error: Failed to list models.")
print(e)
return models
for model in model_infos:
if not model.private and not model.gated:
if not_tag and not_tag in model.tags: continue
models.append(model.id)
if len(models) == limit: break
return models
models = find_model_list("John6666", ["anime"])
def get_t2i_model_info_dict(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
info = {"md": "None"}
try:
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
model = api.model_info(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
return info
if model.private or model.gated: return info
try:
tags = model.tags
except Exception:
return info
if not 'diffusers' in model.tags: return info
if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
else: info["ver"] = "Other"
info["url"] = f"https://huggingface.co/{repo_id}/"
if model.card_data and model.card_data.tags:
info["tags"] = model.card_data.tags
info["downloads"] = model.downloads
info["likes"] = model.likes
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]]
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
return info
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
from datetime import datetime, timezone, timedelta
progress(0, desc="Updating gallery...")
dt_now = datetime.now(timezone(timedelta(hours=9)))
basename = dt_now.strftime('%Y%m%d_%H%M%S_')
i = 1
if not images: return images
output_images = []
output_paths = []
for image in images:
filename = f'{image[1]}_{basename}{str(i)}.png'
i += 1
oldpath = Path(image[0])
newpath = oldpath
try:
if oldpath.stem == "image" and oldpath.exists():
newpath = oldpath.resolve().rename(Path(filename).resolve())
except Exception as e:
print(e)
pass
finally:
output_paths.append(str(newpath))
output_images.append((str(newpath), str(filename)))
progress(1, desc="Gallery updated.")
return gr.update(value=output_images), gr.update(value=output_paths)
def load_model(model_name: str):
if model_name in loaded_models.keys(): return loaded_models[model_name]
try:
loaded_models[model_name] = gr.load(f'models/{model_name}')
print(f"Loaded: {model_name}")
except Exception as e:
if model_name in loaded_models.keys(): del loaded_models[model_name]
print(f"Failed to load: {model_name}")
print(e)
return None
try:
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
except Exception as e:
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
print(e)
return loaded_models[model_name]
for model in models:
load_model(model)
def get_model_info_md(model_name: str):
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
def change_model(model_name: str):
load_model(model_name)
return get_model_info_md(model_name)
def infer(prompt: str, model_name: str, recom_prompt: bool, progress=gr.Progress(track_tqdm=True)):
from PIL import Image
import random
seed = ""
rand = random.randint(1, 500)
for i in range(rand):
seed += " "
rprompt = ", highly detailed, masterpiece, best quality, very aesthetic, absurdres, " if recom_prompt else ""
caption = model_name.split("/")[-1]
try:
model = load_model(model_name)
if not model: return (Image(), None)
image_path = model(prompt + rprompt + seed)
image = Image.open(image_path).convert('RGB')
except Exception as e:
print(e)
return (Image(), None)
return (image, caption)
def infer_multi(prompt: str, model_name: str, recom_prompt: bool, image_num: float, results: list, progress=gr.Progress(track_tqdm=True)):
image_num = int(image_num)
images = results if results else []
for i in range(image_num):
images.append(infer(prompt, model_name, recom_prompt))
yield images
css = """"""
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
with gr.Column():
model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]))
image_num = gr.Slider(label="Number of Images", minimum=1, maximum=8, value=1, step=1)
recom_prompt = gr.Checkbox(label="Recommended Prompt", value=True)
prompt = gr.Text(label="Prompt", lines=1, max_lines=8, placeholder="1girl, solo, ...")
run_button = gr.Button("Generate Image")
results = gr.Gallery(label="Gallery", interactive=False, show_download_button=True, show_share_button=False,
container=True, format="png", object_fit="contain")
image_files = gr.Files(label="Download", interactive=False)
clear_results = gr.Button("Clear Gallery and Download")
gr.Markdown(
f"""This demo was created in reference to the following demos.
- [Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood).
- [Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL).
"""
)
gr.DuplicateButton(value="Duplicate Space")
model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer_multi,
inputs=[prompt, model_name, recom_prompt, image_num, results],
outputs=[results],
queue=True,
show_progress="full",
show_api=True,
).success(save_gallery_images, [results], [results, image_files], queue=False, show_api=False)
clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
demo.queue()
demo.launch()