John6666's picture
Upload 46 files
0eea822 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
from functools import partial
import math
import logging
from typing import Sequence, Tuple, Union, Callable
import torch
import torch.nn as nn
import torch.utils.checkpoint
from torch.nn.init import trunc_normal_
from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
logger = logging.getLogger("dinov2")
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
if not depth_first and include_root:
fn(module=module, name=name)
for child_name, child_module in module.named_children():
child_name = ".".join((name, child_name)) if name else child_name
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
if depth_first and include_root:
fn(module=module, name=name)
return module
class BlockChunk(nn.ModuleList):
def forward(self, x):
for b in self:
x = b(x)
return x
class DinoVisionTransformer(nn.Module):
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
ffn_bias=True,
proj_bias=True,
drop_path_rate=0.0,
drop_path_uniform=False,
init_values=None, # for layerscale: None or 0 => no layerscale
embed_layer=PatchEmbed,
act_layer=nn.GELU,
block_fn=Block,
ffn_layer="mlp",
block_chunks=1,
num_register_tokens=0,
interpolate_antialias=False,
interpolate_offset=0.1,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
proj_bias (bool): enable bias for proj in attn if True
ffn_bias (bool): enable bias for ffn if True
drop_path_rate (float): stochastic depth rate
drop_path_uniform (bool): apply uniform drop rate across blocks
weight_init (str): weight init scheme
init_values (float): layer-scale init values
embed_layer (nn.Module): patch embedding layer
act_layer (nn.Module): MLP activation layer
block_fn (nn.Module): transformer block class
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
"""
super().__init__()
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_tokens = 1
self.n_blocks = depth
self.num_heads = num_heads
self.patch_size = patch_size
self.num_register_tokens = num_register_tokens
self.interpolate_antialias = interpolate_antialias
self.interpolate_offset = interpolate_offset
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
assert num_register_tokens >= 0
self.register_tokens = (
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
)
if drop_path_uniform is True:
dpr = [drop_path_rate] * depth
else:
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
if ffn_layer == "mlp":
logger.info("using MLP layer as FFN")
ffn_layer = Mlp
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
logger.info("using SwiGLU layer as FFN")
ffn_layer = SwiGLUFFNFused
elif ffn_layer == "identity":
logger.info("using Identity layer as FFN")
def f(*args, **kwargs):
return nn.Identity()
ffn_layer = f
else:
raise NotImplementedError
blocks_list = [
block_fn(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_bias=proj_bias,
ffn_bias=ffn_bias,
drop_path=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
ffn_layer=ffn_layer,
init_values=init_values,
)
for i in range(depth)
]
if block_chunks > 0:
self.chunked_blocks = True
chunked_blocks = []
chunksize = depth // block_chunks
for i in range(0, depth, chunksize):
# this is to keep the block index consistent if we chunk the block list
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
else:
self.chunked_blocks = False
self.blocks = nn.ModuleList(blocks_list)
self.norm = norm_layer(embed_dim)
self.head = nn.Identity()
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
self.init_weights()
def init_weights(self):
trunc_normal_(self.pos_embed, std=0.02)
nn.init.normal_(self.cls_token, std=1e-6)
if self.register_tokens is not None:
nn.init.normal_(self.register_tokens, std=1e-6)
named_apply(init_weights_vit_timm, self)
def interpolate_pos_encoding(self, x, w, h):
previous_dtype = x.dtype
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
if npatch == N and w == h:
return self.pos_embed
pos_embed = self.pos_embed.float()
class_pos_embed = pos_embed[:, 0]
patch_pos_embed = pos_embed[:, 1:]
dim = x.shape[-1]
w0 = w // self.patch_size
h0 = h // self.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
# DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
# w0, h0 = w0 + 0.1, h0 + 0.1
sqrt_N = math.sqrt(N)
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
scale_factor=(sx, sy),
# (int(w0), int(h0)), # to solve the upsampling shape issue
mode="bicubic",
antialias=self.interpolate_antialias
)
assert int(w0) == patch_pos_embed.shape[-2]
assert int(h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
def prepare_tokens_with_masks(self, x, masks=None):
B, nc, w, h = x.shape
x = self.patch_embed(x)
if masks is not None:
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.interpolate_pos_encoding(x, w, h)
if self.register_tokens is not None:
x = torch.cat(
(
x[:, :1],
self.register_tokens.expand(x.shape[0], -1, -1),
x[:, 1:],
),
dim=1,
)
return x
def forward_features_list(self, x_list, masks_list):
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
for blk in self.blocks:
x = blk(x)
all_x = x
output = []
for x, masks in zip(all_x, masks_list):
x_norm = self.norm(x)
output.append(
{
"x_norm_clstoken": x_norm[:, 0],
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
"x_prenorm": x,
"masks": masks,
}
)
return output
def forward_features(self, x, masks=None):
if isinstance(x, list):
return self.forward_features_list(x, masks)
x = self.prepare_tokens_with_masks(x, masks)
for blk in self.blocks:
x = blk(x)
x_norm = self.norm(x)
return {
"x_norm_clstoken": x_norm[:, 0],
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
"x_prenorm": x,
"masks": masks,
}
def _get_intermediate_layers_not_chunked(self, x, n=1):
x = self.prepare_tokens_with_masks(x)
# If n is an int, take the n last blocks. If it's a list, take them
output, total_block_len = [], len(self.blocks)
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
for i, blk in enumerate(self.blocks):
x = blk(x)
if i in blocks_to_take:
output.append(x)
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
return output
def _get_intermediate_layers_chunked(self, x, n=1):
x = self.prepare_tokens_with_masks(x)
output, i, total_block_len = [], 0, len(self.blocks[-1])
# If n is an int, take the n last blocks. If it's a list, take them
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
for block_chunk in self.blocks:
for blk in block_chunk[i:]: # Passing the nn.Identity()
x = blk(x)
if i in blocks_to_take:
output.append(x)
i += 1
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
return output
def get_intermediate_layers(
self,
x: torch.Tensor,
n: Union[int, Sequence] = 1, # Layers or n last layers to take
reshape: bool = False,
return_class_token: bool = False,
norm=True
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
if self.chunked_blocks:
outputs = self._get_intermediate_layers_chunked(x, n)
else:
outputs = self._get_intermediate_layers_not_chunked(x, n)
if norm:
outputs = [self.norm(out) for out in outputs]
class_tokens = [out[:, 0] for out in outputs]
outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
if reshape:
B, _, w, h = x.shape
outputs = [
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
for out in outputs
]
if return_class_token:
return tuple(zip(outputs, class_tokens))
return tuple(outputs)
def forward(self, *args, is_training=False, **kwargs):
ret = self.forward_features(*args, **kwargs)
if is_training:
return ret
else:
return self.head(ret["x_norm_clstoken"])
def init_weights_vit_timm(module: nn.Module, name: str = ""):
"""ViT weight initialization, original timm impl (for reproducibility)"""
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
return model
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
return model
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
return model
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
"""
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
"""
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=1536,
depth=40,
num_heads=24,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
return model
def DINOv2(model_name):
model_zoo = {
"vits": vit_small,
"vitb": vit_base,
"vitl": vit_large,
"vitg": vit_giant2
}
return model_zoo[model_name](
img_size=518,
patch_size=14,
init_values=1.0,
ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
block_chunks=0,
num_register_tokens=0,
interpolate_antialias=False,
interpolate_offset=0.1
)