John6666 commited on
Commit
d83aa41
1 Parent(s): 2ec96aa

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +10 -157
  2. multit2i.py +180 -0
app.py CHANGED
@@ -1,164 +1,17 @@
1
  import gradio as gr
2
- from pathlib import Path
3
-
4
-
5
- loaded_models = {}
6
- model_info_dict = {}
7
-
8
-
9
- def list_sub(a, b):
10
- return [e for e in a if e not in b]
11
-
12
-
13
- def list_uniq(l):
14
- return sorted(set(l), key=l.index)
15
-
16
-
17
- def is_repo_name(s):
18
- import re
19
- return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
20
-
21
-
22
- def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30):
23
- from huggingface_hub import HfApi
24
- api = HfApi()
25
- default_tags = ["diffusers"]
26
- models = []
27
- try:
28
- model_infos = api.list_models(author=author, task="text-to-image", pipeline_tag="text-to-image",
29
- tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit * 5)
30
- except Exception as e:
31
- print(f"Error: Failed to list models.")
32
- print(e)
33
- return models
34
- for model in model_infos:
35
- if not model.private and not model.gated:
36
- if not_tag and not_tag in model.tags: continue
37
- models.append(model.id)
38
- if len(models) == limit: break
39
- return models
40
 
41
 
42
  models = find_model_list("John6666", [], "anime", "downloads")
43
-
44
-
45
- def get_t2i_model_info_dict(repo_id: str):
46
- from huggingface_hub import HfApi
47
- api = HfApi()
48
- info = {"md": "None"}
49
- try:
50
- if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
51
- model = api.model_info(repo_id=repo_id)
52
- except Exception as e:
53
- print(f"Error: Failed to get {repo_id}'s info.")
54
- print(e)
55
- return info
56
- if model.private or model.gated: return info
57
- try:
58
- tags = model.tags
59
- except Exception:
60
- return info
61
- if not 'diffusers' in model.tags: return info
62
- if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
63
- elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
64
- elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
65
- else: info["ver"] = "Other"
66
- info["url"] = f"https://huggingface.co/{repo_id}/"
67
- if model.card_data and model.card_data.tags:
68
- info["tags"] = model.card_data.tags
69
- info["downloads"] = model.downloads
70
- info["likes"] = model.likes
71
- info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
72
- un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
73
- descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]]
74
- info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
75
- return info
76
-
77
-
78
- def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
79
- from datetime import datetime, timezone, timedelta
80
- progress(0, desc="Updating gallery...")
81
- dt_now = datetime.now(timezone(timedelta(hours=9)))
82
- basename = dt_now.strftime('%Y%m%d_%H%M%S_')
83
- i = 1
84
- if not images: return images
85
- output_images = []
86
- output_paths = []
87
- for image in images:
88
- filename = f'{image[1]}_{basename}{str(i)}.png'
89
- i += 1
90
- oldpath = Path(image[0])
91
- newpath = oldpath
92
- try:
93
- if oldpath.stem == "image" and oldpath.exists():
94
- newpath = oldpath.resolve().rename(Path(filename).resolve())
95
- except Exception as e:
96
- print(e)
97
- pass
98
- finally:
99
- output_paths.append(str(newpath))
100
- output_images.append((str(newpath), str(filename)))
101
- progress(1, desc="Gallery updated.")
102
- return gr.update(value=output_images), gr.update(value=output_paths)
103
-
104
-
105
- def load_model(model_name: str):
106
- if model_name in loaded_models.keys(): return loaded_models[model_name]
107
- try:
108
- loaded_models[model_name] = gr.load(f'models/{model_name}')
109
- print(f"Loaded: {model_name}")
110
- except Exception as e:
111
- if model_name in loaded_models.keys(): del loaded_models[model_name]
112
- print(f"Failed to load: {model_name}")
113
- print(e)
114
- return None
115
- try:
116
- model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
117
- except Exception as e:
118
- if model_name in model_info_dict.keys(): del model_info_dict[model_name]
119
- print(e)
120
- return loaded_models[model_name]
121
-
122
-
123
- for model in models:
124
- load_model(model)
125
-
126
-
127
- def get_model_info_md(model_name: str):
128
- if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
129
-
130
-
131
- def change_model(model_name: str):
132
- load_model(model_name)
133
- return get_model_info_md(model_name)
134
-
135
-
136
- def infer(prompt: str, model_name: str, recom_prompt: bool, progress=gr.Progress(track_tqdm=True)):
137
- from PIL import Image
138
- import random
139
- seed = ""
140
- rand = random.randint(1, 500)
141
- for i in range(rand):
142
- seed += " "
143
- rprompt = ", highly detailed, masterpiece, best quality, very aesthetic, absurdres, " if recom_prompt else ""
144
- caption = model_name.split("/")[-1]
145
- try:
146
- model = load_model(model_name)
147
- if not model: return (Image(), None)
148
- image_path = model(prompt + rprompt + seed)
149
- image = Image.open(image_path).convert('RGB')
150
- except Exception as e:
151
- print(e)
152
- return (Image(), None)
153
- return (image, caption)
154
-
155
-
156
- def infer_multi(prompt: str, model_name: str, recom_prompt: bool, image_num: float, results: list, progress=gr.Progress(track_tqdm=True)):
157
- image_num = int(image_num)
158
- images = results if results else []
159
- for i in range(image_num):
160
- images.append(infer(prompt, model_name, recom_prompt))
161
- yield images
162
 
163
 
164
  css = """"""
 
1
  import gradio as gr
2
+ from multit2i import (
3
+ load_models,
4
+ find_model_list,
5
+ infer_multi,
6
+ save_gallery_images,
7
+ change_model,
8
+ get_model_info_md,
9
+ loaded_models,
10
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  models = find_model_list("John6666", [], "anime", "downloads")
14
+ load_models(models, 10)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
 
17
  css = """"""
multit2i.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import asyncio
3
+ from pathlib import Path
4
+
5
+
6
+ loaded_models = {}
7
+ model_info_dict = {}
8
+
9
+
10
+ def list_sub(a, b):
11
+ return [e for e in a if e not in b]
12
+
13
+
14
+ def list_uniq(l):
15
+ return sorted(set(l), key=l.index)
16
+
17
+
18
+ def is_repo_name(s):
19
+ import re
20
+ return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
21
+
22
+
23
+ def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30):
24
+ from huggingface_hub import HfApi
25
+ api = HfApi()
26
+ default_tags = ["diffusers"]
27
+ if not sort: sort = "last_modified"
28
+ models = []
29
+ try:
30
+ model_infos = api.list_models(author=author, task="text-to-image", pipeline_tag="text-to-image",
31
+ tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit * 5)
32
+ except Exception as e:
33
+ print(f"Error: Failed to list models.")
34
+ print(e)
35
+ return models
36
+ for model in model_infos:
37
+ if not model.private and not model.gated:
38
+ if not_tag and not_tag in model.tags: continue
39
+ models.append(model.id)
40
+ if len(models) == limit: break
41
+ return models
42
+
43
+
44
+ def get_t2i_model_info_dict(repo_id: str):
45
+ from huggingface_hub import HfApi
46
+ api = HfApi()
47
+ info = {"md": "None"}
48
+ try:
49
+ if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
50
+ model = api.model_info(repo_id=repo_id)
51
+ except Exception as e:
52
+ print(f"Error: Failed to get {repo_id}'s info.")
53
+ print(e)
54
+ return info
55
+ if model.private or model.gated: return info
56
+ try:
57
+ tags = model.tags
58
+ except Exception:
59
+ return info
60
+ if not 'diffusers' in model.tags: return info
61
+ if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
62
+ elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
63
+ elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
64
+ else: info["ver"] = "Other"
65
+ info["url"] = f"https://huggingface.co/{repo_id}/"
66
+ if model.card_data and model.card_data.tags:
67
+ info["tags"] = model.card_data.tags
68
+ info["downloads"] = model.downloads
69
+ info["likes"] = model.likes
70
+ info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
71
+ un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
72
+ descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]]
73
+ info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
74
+ return info
75
+
76
+
77
+ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
78
+ from datetime import datetime, timezone, timedelta
79
+ progress(0, desc="Updating gallery...")
80
+ dt_now = datetime.now(timezone(timedelta(hours=9)))
81
+ basename = dt_now.strftime('%Y%m%d_%H%M%S_')
82
+ i = 1
83
+ if not images: return images
84
+ output_images = []
85
+ output_paths = []
86
+ for image in images:
87
+ filename = f'{image[1]}_{basename}{str(i)}.png'
88
+ i += 1
89
+ oldpath = Path(image[0])
90
+ newpath = oldpath
91
+ try:
92
+ if oldpath.stem == "image" and oldpath.exists():
93
+ newpath = oldpath.resolve().rename(Path(filename).resolve())
94
+ except Exception as e:
95
+ print(e)
96
+ pass
97
+ finally:
98
+ output_paths.append(str(newpath))
99
+ output_images.append((str(newpath), str(filename)))
100
+ progress(1, desc="Gallery updated.")
101
+ return gr.update(value=output_images), gr.update(value=output_paths)
102
+
103
+
104
+ def load_model(model_name: str):
105
+ global loaded_models
106
+ global model_info_dict
107
+ if model_name in loaded_models.keys(): return loaded_models[model_name]
108
+ try:
109
+ loaded_models[model_name] = gr.load(f'models/{model_name}')
110
+ print(f"Loaded: {model_name}")
111
+ except Exception as e:
112
+ if model_name in loaded_models.keys(): del loaded_models[model_name]
113
+ print(f"Failed to load: {model_name}")
114
+ print(e)
115
+ return None
116
+ try:
117
+ model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
118
+ except Exception as e:
119
+ if model_name in model_info_dict.keys(): del model_info_dict[model_name]
120
+ print(e)
121
+ return loaded_models[model_name]
122
+
123
+
124
+ async def async_load_models(models: list, limit: int=5):
125
+ sem = asyncio.Semaphore(limit)
126
+ async def async_load_model(model: str):
127
+ async with sem:
128
+ try:
129
+ return load_model(model)
130
+ except Exception as e:
131
+ print(e)
132
+ tasks = [asyncio.create_task(async_load_model(model)) for model in models]
133
+ return await asyncio.wait(tasks)
134
+
135
+
136
+ def load_models(models: list, limit: int=5):
137
+ loop = asyncio.get_event_loop()
138
+ try:
139
+ loop.run_until_complete(async_load_models(models, limit))
140
+ except Exception as e:
141
+ print(e)
142
+ pass
143
+ loop.close()
144
+
145
+
146
+ def get_model_info_md(model_name: str):
147
+ if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
148
+
149
+
150
+ def change_model(model_name: str):
151
+ load_model(model_name)
152
+ return get_model_info_md(model_name)
153
+
154
+
155
+ def infer(prompt: str, model_name: str, recom_prompt: bool, progress=gr.Progress(track_tqdm=True)):
156
+ from PIL import Image
157
+ import random
158
+ seed = ""
159
+ rand = random.randint(1, 500)
160
+ for i in range(rand):
161
+ seed += " "
162
+ rprompt = ", highly detailed, masterpiece, best quality, very aesthetic, absurdres, " if recom_prompt else ""
163
+ caption = model_name.split("/")[-1]
164
+ try:
165
+ model = load_model(model_name)
166
+ if not model: return (Image.Image(), None)
167
+ image_path = model(prompt + rprompt + seed)
168
+ image = Image.open(image_path).convert('RGB')
169
+ except Exception as e:
170
+ print(e)
171
+ return (Image.Image(), None)
172
+ return (image, caption)
173
+
174
+
175
+ def infer_multi(prompt: str, model_name: str, recom_prompt: bool, image_num: float, results: list, progress=gr.Progress(track_tqdm=True)):
176
+ image_num = int(image_num)
177
+ images = results if results else []
178
+ for i in range(image_num):
179
+ images.append(infer(prompt, model_name, recom_prompt))
180
+ yield images