Spaces:
Sleeping
Sleeping
def list_uniq(l): | |
return sorted(set(l), key=l.index) | |
def get_status(model_name: str): | |
from huggingface_hub import InferenceClient | |
client = InferenceClient(timeout=10) | |
return client.get_model_status(model_name) | |
def is_loadable(model_name: str, force_gpu: bool = False): | |
try: | |
status = get_status(model_name) | |
except Exception as e: | |
print(e) | |
print(f"Couldn't load {model_name}.") | |
return False | |
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys() | |
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state): | |
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}") | |
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state) | |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=True): | |
from huggingface_hub import HfApi | |
api = HfApi() | |
#default_tags = ["transformers"] | |
default_tags = [] | |
if not sort: sort = "last_modified" | |
models = [] | |
limit = limit * 20 if force_gpu else limit * 5 | |
try: | |
model_infos = api.list_models(author=author, pipeline_tag="text-generation", | |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit) | |
except Exception as e: | |
print(f"Error: Failed to list models.") | |
print(e) | |
return models | |
for model in model_infos: | |
if not model.private and not model.gated: | |
if not_tag and not_tag in model.tags or not is_loadable(model.id, force_gpu): continue | |
models.append(model.id) | |
if len(models) == limit: break | |
return models | |