John6666 commited on
Commit
62387de
1 Parent(s): bf56799

Upload 9 files

Browse files
Files changed (5) hide show
  1. app.py +18 -4
  2. live_preview_helpers.py +166 -166
  3. loras.json +0 -27
  4. modutils.py +2 -2
  5. requirements.txt +2 -2
app.py CHANGED
@@ -3,10 +3,10 @@ import gradio as gr
3
  import json
4
  import torch
5
  from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
6
- from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
7
  from diffusers.utils import load_image
8
  from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel, FluxControlNetImg2ImgPipeline
9
- from huggingface_hub import HfFileSystem, ModelCard
10
  import os
11
  import copy
12
  import random
@@ -589,9 +589,16 @@ def check_custom_model(link):
589
  # Assume it's a Hugging Face model path
590
  return get_huggingface_safetensors(link)
591
 
 
 
 
 
 
 
 
592
  css = '''
593
- #gen_btn{height: 100%}
594
  #gen_column{align-self: stretch}
 
595
  #title{text-align: center}
596
  #title h1{font-size: 3em; display:inline-flex; align-items:center}
597
  #title img{width: 100px; margin-right: 0.25em}
@@ -605,11 +612,12 @@ css = '''
605
  #progress .generating{display:none}
606
  .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
607
  .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
608
- .button_total{height: 100%}
609
  #loaded_loras [data-testid="block-info"]{font-size:80%}
610
  #custom_lora_structure{background: var(--block-background-fill)}
611
  #custom_lora_btn{margin-top: auto;margin-bottom: 11px}
612
  #random_btn{font-size: 300%}
 
613
  .info {text-align:center; !important}
614
  '''
615
  with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
@@ -682,6 +690,8 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
682
  with gr.Column():
683
  progress_bar = gr.Markdown(elem_id="progress",visible=False)
684
  result = gr.Image(label="Generated Image", format="png", show_share_button=False)
 
 
685
  with gr.Group():
686
  model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True)
687
  model_info = gr.Markdown(elem_classes="info")
@@ -810,6 +820,10 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
810
  outputs=[result, seed, progress_bar],
811
  queue=True,
812
  show_api=True,
 
 
 
 
813
  )
814
 
815
  input_image.upload(preprocess_i2i_image, [input_image, input_image_preprocess, height, width], [input_image], queue=False, show_api=False)
 
3
  import json
4
  import torch
5
  from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
6
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
7
  from diffusers.utils import load_image
8
  from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel, FluxControlNetImg2ImgPipeline
9
+ from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
10
  import os
11
  import copy
12
  import random
 
589
  # Assume it's a Hugging Face model path
590
  return get_huggingface_safetensors(link)
591
 
592
+ def update_history(new_image, history):
593
+ """Updates the history gallery with the new image."""
594
+ if history is None:
595
+ history = []
596
+ history.insert(0, new_image)
597
+ return history
598
+
599
  css = '''
 
600
  #gen_column{align-self: stretch}
601
+ #gen_btn{height: 100%}
602
  #title{text-align: center}
603
  #title h1{font-size: 3em; display:inline-flex; align-items:center}
604
  #title img{width: 100px; margin-right: 0.25em}
 
612
  #progress .generating{display:none}
613
  .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
614
  .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
615
+ #component-8, .button_total{height: 100%; align-self: stretch;}
616
  #loaded_loras [data-testid="block-info"]{font-size:80%}
617
  #custom_lora_structure{background: var(--block-background-fill)}
618
  #custom_lora_btn{margin-top: auto;margin-bottom: 11px}
619
  #random_btn{font-size: 300%}
620
+ #component-11{align-self: stretch;}
621
  .info {text-align:center; !important}
622
  '''
623
  with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
 
690
  with gr.Column():
691
  progress_bar = gr.Markdown(elem_id="progress",visible=False)
692
  result = gr.Image(label="Generated Image", format="png", show_share_button=False)
693
+ with gr.Accordion("History", open=False):
694
+ history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
695
  with gr.Group():
696
  model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True)
697
  model_info = gr.Markdown(elem_classes="info")
 
820
  outputs=[result, seed, progress_bar],
821
  queue=True,
822
  show_api=True,
823
+ ).then( # Update the history gallery
824
+ fn=lambda x, history: update_history(x, history),
825
+ inputs=[result, history_gallery],
826
+ outputs=history_gallery,
827
  )
828
 
829
  input_image.upload(preprocess_i2i_image, [input_image, input_image_preprocess, height, width], [input_image], queue=False, show_api=False)
live_preview_helpers.py CHANGED
@@ -1,166 +1,166 @@
1
- import torch
2
- import numpy as np
3
- from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
4
- from typing import Any, Dict, List, Optional, Union
5
-
6
- # Helper functions
7
- def calculate_shift(
8
- image_seq_len,
9
- base_seq_len: int = 256,
10
- max_seq_len: int = 4096,
11
- base_shift: float = 0.5,
12
- max_shift: float = 1.16,
13
- ):
14
- m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
15
- b = base_shift - m * base_seq_len
16
- mu = image_seq_len * m + b
17
- return mu
18
-
19
- def retrieve_timesteps(
20
- scheduler,
21
- num_inference_steps: Optional[int] = None,
22
- device: Optional[Union[str, torch.device]] = None,
23
- timesteps: Optional[List[int]] = None,
24
- sigmas: Optional[List[float]] = None,
25
- **kwargs,
26
- ):
27
- if timesteps is not None and sigmas is not None:
28
- raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
29
- if timesteps is not None:
30
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
31
- timesteps = scheduler.timesteps
32
- num_inference_steps = len(timesteps)
33
- elif sigmas is not None:
34
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
35
- timesteps = scheduler.timesteps
36
- num_inference_steps = len(timesteps)
37
- else:
38
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
39
- timesteps = scheduler.timesteps
40
- return timesteps, num_inference_steps
41
-
42
- # FLUX pipeline function
43
- @torch.inference_mode()
44
- def flux_pipe_call_that_returns_an_iterable_of_images(
45
- self,
46
- prompt: Union[str, List[str]] = None,
47
- prompt_2: Optional[Union[str, List[str]]] = None,
48
- height: Optional[int] = None,
49
- width: Optional[int] = None,
50
- num_inference_steps: int = 28,
51
- timesteps: List[int] = None,
52
- guidance_scale: float = 3.5,
53
- num_images_per_prompt: Optional[int] = 1,
54
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
- latents: Optional[torch.FloatTensor] = None,
56
- prompt_embeds: Optional[torch.FloatTensor] = None,
57
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
58
- output_type: Optional[str] = "pil",
59
- return_dict: bool = True,
60
- joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
- max_sequence_length: int = 512,
62
- good_vae: Optional[Any] = None,
63
- ):
64
- height = height or self.default_sample_size * self.vae_scale_factor
65
- width = width or self.default_sample_size * self.vae_scale_factor
66
-
67
- # 1. Check inputs
68
- self.check_inputs(
69
- prompt,
70
- prompt_2,
71
- height,
72
- width,
73
- prompt_embeds=prompt_embeds,
74
- pooled_prompt_embeds=pooled_prompt_embeds,
75
- max_sequence_length=max_sequence_length,
76
- )
77
-
78
- self._guidance_scale = guidance_scale
79
- self._joint_attention_kwargs = joint_attention_kwargs
80
- self._interrupt = False
81
-
82
- # 2. Define call parameters
83
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
84
- device = self._execution_device
85
-
86
- # 3. Encode prompt
87
- lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
88
- prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
89
- prompt=prompt,
90
- prompt_2=prompt_2,
91
- prompt_embeds=prompt_embeds,
92
- pooled_prompt_embeds=pooled_prompt_embeds,
93
- device=device,
94
- num_images_per_prompt=num_images_per_prompt,
95
- max_sequence_length=max_sequence_length,
96
- lora_scale=lora_scale,
97
- )
98
- # 4. Prepare latent variables
99
- num_channels_latents = self.transformer.config.in_channels // 4
100
- latents, latent_image_ids = self.prepare_latents(
101
- batch_size * num_images_per_prompt,
102
- num_channels_latents,
103
- height,
104
- width,
105
- prompt_embeds.dtype,
106
- device,
107
- generator,
108
- latents,
109
- )
110
- # 5. Prepare timesteps
111
- sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
112
- image_seq_len = latents.shape[1]
113
- mu = calculate_shift(
114
- image_seq_len,
115
- self.scheduler.config.base_image_seq_len,
116
- self.scheduler.config.max_image_seq_len,
117
- self.scheduler.config.base_shift,
118
- self.scheduler.config.max_shift,
119
- )
120
- timesteps, num_inference_steps = retrieve_timesteps(
121
- self.scheduler,
122
- num_inference_steps,
123
- device,
124
- timesteps,
125
- sigmas,
126
- mu=mu,
127
- )
128
- self._num_timesteps = len(timesteps)
129
-
130
- # Handle guidance
131
- guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
132
-
133
- # 6. Denoising loop
134
- for i, t in enumerate(timesteps):
135
- if self.interrupt:
136
- continue
137
-
138
- timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
-
140
- noise_pred = self.transformer(
141
- hidden_states=latents,
142
- timestep=timestep / 1000,
143
- guidance=guidance,
144
- pooled_projections=pooled_prompt_embeds,
145
- encoder_hidden_states=prompt_embeds,
146
- txt_ids=text_ids,
147
- img_ids=latent_image_ids,
148
- joint_attention_kwargs=self.joint_attention_kwargs,
149
- return_dict=False,
150
- )[0]
151
- # Yield intermediate result
152
- latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
153
- latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
154
- image = self.vae.decode(latents_for_image, return_dict=False)[0]
155
- yield self.image_processor.postprocess(image, output_type=output_type)[0]
156
- latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
157
- torch.cuda.empty_cache()
158
-
159
-
160
- # Final image using good_vae
161
- latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
162
- latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
163
- image = good_vae.decode(latents, return_dict=False)[0]
164
- self.maybe_free_model_hooks()
165
- torch.cuda.empty_cache()
166
- yield self.image_processor.postprocess(image, output_type=output_type)[0]
 
1
+ import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ # Helper functions
7
+ def calculate_shift(
8
+ image_seq_len,
9
+ base_seq_len: int = 256,
10
+ max_seq_len: int = 4096,
11
+ base_shift: float = 0.5,
12
+ max_shift: float = 1.16,
13
+ ):
14
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
15
+ b = base_shift - m * base_seq_len
16
+ mu = image_seq_len * m + b
17
+ return mu
18
+
19
+ def retrieve_timesteps(
20
+ scheduler,
21
+ num_inference_steps: Optional[int] = None,
22
+ device: Optional[Union[str, torch.device]] = None,
23
+ timesteps: Optional[List[int]] = None,
24
+ sigmas: Optional[List[float]] = None,
25
+ **kwargs,
26
+ ):
27
+ if timesteps is not None and sigmas is not None:
28
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
29
+ if timesteps is not None:
30
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
31
+ timesteps = scheduler.timesteps
32
+ num_inference_steps = len(timesteps)
33
+ elif sigmas is not None:
34
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
35
+ timesteps = scheduler.timesteps
36
+ num_inference_steps = len(timesteps)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
39
+ timesteps = scheduler.timesteps
40
+ return timesteps, num_inference_steps
41
+
42
+ # FLUX pipeline function
43
+ @torch.inference_mode()
44
+ def flux_pipe_call_that_returns_an_iterable_of_images(
45
+ self,
46
+ prompt: Union[str, List[str]] = None,
47
+ prompt_2: Optional[Union[str, List[str]]] = None,
48
+ height: Optional[int] = None,
49
+ width: Optional[int] = None,
50
+ num_inference_steps: int = 28,
51
+ timesteps: List[int] = None,
52
+ guidance_scale: float = 3.5,
53
+ num_images_per_prompt: Optional[int] = 1,
54
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
+ latents: Optional[torch.FloatTensor] = None,
56
+ prompt_embeds: Optional[torch.FloatTensor] = None,
57
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
58
+ output_type: Optional[str] = "pil",
59
+ return_dict: bool = True,
60
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
+ max_sequence_length: int = 512,
62
+ good_vae: Optional[Any] = None,
63
+ ):
64
+ height = height or self.default_sample_size * self.vae_scale_factor
65
+ width = width or self.default_sample_size * self.vae_scale_factor
66
+
67
+ # 1. Check inputs
68
+ self.check_inputs(
69
+ prompt,
70
+ prompt_2,
71
+ height,
72
+ width,
73
+ prompt_embeds=prompt_embeds,
74
+ pooled_prompt_embeds=pooled_prompt_embeds,
75
+ max_sequence_length=max_sequence_length,
76
+ )
77
+
78
+ self._guidance_scale = guidance_scale
79
+ self._joint_attention_kwargs = joint_attention_kwargs
80
+ self._interrupt = False
81
+
82
+ # 2. Define call parameters
83
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
84
+ device = self._execution_device
85
+
86
+ # 3. Encode prompt
87
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
88
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
89
+ prompt=prompt,
90
+ prompt_2=prompt_2,
91
+ prompt_embeds=prompt_embeds,
92
+ pooled_prompt_embeds=pooled_prompt_embeds,
93
+ device=device,
94
+ num_images_per_prompt=num_images_per_prompt,
95
+ max_sequence_length=max_sequence_length,
96
+ lora_scale=lora_scale,
97
+ )
98
+ # 4. Prepare latent variables
99
+ num_channels_latents = self.transformer.config.in_channels // 4
100
+ latents, latent_image_ids = self.prepare_latents(
101
+ batch_size * num_images_per_prompt,
102
+ num_channels_latents,
103
+ height,
104
+ width,
105
+ prompt_embeds.dtype,
106
+ device,
107
+ generator,
108
+ latents,
109
+ )
110
+ # 5. Prepare timesteps
111
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
112
+ image_seq_len = latents.shape[1]
113
+ mu = calculate_shift(
114
+ image_seq_len,
115
+ self.scheduler.config.base_image_seq_len,
116
+ self.scheduler.config.max_image_seq_len,
117
+ self.scheduler.config.base_shift,
118
+ self.scheduler.config.max_shift,
119
+ )
120
+ timesteps, num_inference_steps = retrieve_timesteps(
121
+ self.scheduler,
122
+ num_inference_steps,
123
+ device,
124
+ timesteps,
125
+ sigmas,
126
+ mu=mu,
127
+ )
128
+ self._num_timesteps = len(timesteps)
129
+
130
+ # Handle guidance
131
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
132
+
133
+ # 6. Denoising loop
134
+ for i, t in enumerate(timesteps):
135
+ if self.interrupt:
136
+ continue
137
+
138
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
+
140
+ noise_pred = self.transformer(
141
+ hidden_states=latents,
142
+ timestep=timestep / 1000,
143
+ guidance=guidance,
144
+ pooled_projections=pooled_prompt_embeds,
145
+ encoder_hidden_states=prompt_embeds,
146
+ txt_ids=text_ids,
147
+ img_ids=latent_image_ids,
148
+ joint_attention_kwargs=self.joint_attention_kwargs,
149
+ return_dict=False,
150
+ )[0]
151
+ # Yield intermediate result
152
+ latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
153
+ latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
154
+ image = self.vae.decode(latents_for_image, return_dict=False)[0]
155
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
156
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
157
+ torch.cuda.empty_cache()
158
+
159
+
160
+ # Final image using good_vae
161
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
162
+ latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
163
+ image = good_vae.decode(latents, return_dict=False)[0]
164
+ self.maybe_free_model_hooks()
165
+ torch.cuda.empty_cache()
166
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
loras.json CHANGED
@@ -111,12 +111,6 @@
111
  "trigger_word": "JojosoStyle",
112
  "trigger_position": "prepend"
113
  },
114
- {
115
- "image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/picture-6-rev1.png?raw=true",
116
- "title": "flux-Realism",
117
- "repo": "XLabs-AI/flux-RealismLora",
118
- "trigger_word": ""
119
- },
120
  {
121
  "image": "https://huggingface.co/multimodalart/vintage-ads-flux/resolve/main/samples/j_XNU6Oe0mgttyvf9uPb3_dc244dd3d6c246b4aff8351444868d66.png",
122
  "title": "Vintage Ads",
@@ -205,13 +199,6 @@
205
  "repo": "dataautogpt3/FLUX-SyntheticAnime",
206
  "trigger_word": "1980s anime screengrab, VHS quality"
207
  },
208
- {
209
- "image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_14.png?raw=true",
210
- "title": "flux-anime",
211
- "repo": "XLabs-AI/flux-lora-collection",
212
- "weights": "anime_lora.safetensors",
213
- "trigger_word": ", anime"
214
- },
215
  {
216
  "image": "https://replicate.delivery/yhqm/QD8Ioy5NExqSCtBS8hG04XIRQZFaC9pxJemINT1bibyjZfSTA/out-0.webp",
217
  "title": "80s Cyberpunk",
@@ -225,20 +212,6 @@
225
  "repo": "kudzueye/boreal-flux-dev-v2",
226
  "trigger_word": "phone photo"
227
  },
228
- {
229
- "image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_18.png?raw=true",
230
- "title": "flux-disney",
231
- "repo": "XLabs-AI/flux-lora-collection",
232
- "weights": "disney_lora.safetensors",
233
- "trigger_word": ", disney style"
234
- },
235
- {
236
- "image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_23.png?raw=true",
237
- "title": "flux-art",
238
- "repo": "XLabs-AI/flux-lora-collection",
239
- "weights": "art_lora.safetensors",
240
- "trigger_word": ", art"
241
- },
242
  {
243
  "image": "https://huggingface.co/martintomov/retrofuturism-flux/resolve/main/images/2e40deba-858e-454f-ae1c-d1ba2adb6a65.jpeg",
244
  "title": "Retrofuturism Flux",
 
111
  "trigger_word": "JojosoStyle",
112
  "trigger_position": "prepend"
113
  },
 
 
 
 
 
 
114
  {
115
  "image": "https://huggingface.co/multimodalart/vintage-ads-flux/resolve/main/samples/j_XNU6Oe0mgttyvf9uPb3_dc244dd3d6c246b4aff8351444868d66.png",
116
  "title": "Vintage Ads",
 
199
  "repo": "dataautogpt3/FLUX-SyntheticAnime",
200
  "trigger_word": "1980s anime screengrab, VHS quality"
201
  },
 
 
 
 
 
 
 
202
  {
203
  "image": "https://replicate.delivery/yhqm/QD8Ioy5NExqSCtBS8hG04XIRQZFaC9pxJemINT1bibyjZfSTA/out-0.webp",
204
  "title": "80s Cyberpunk",
 
212
  "repo": "kudzueye/boreal-flux-dev-v2",
213
  "trigger_word": "phone photo"
214
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
  {
216
  "image": "https://huggingface.co/martintomov/retrofuturism-flux/resolve/main/images/2e40deba-858e-454f-ae1c-d1ba2adb6a65.jpeg",
217
  "title": "Retrofuturism Flux",
modutils.py CHANGED
@@ -136,7 +136,7 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
136
  dt_now = datetime.now(timezone(timedelta(hours=9)))
137
  basename = dt_now.strftime('%Y%m%d_%H%M%S_')
138
  i = 1
139
- if not images: return images
140
  output_images = []
141
  output_paths = []
142
  for image in images:
@@ -153,7 +153,7 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
153
  output_paths.append(str(newpath))
154
  output_images.append((str(newpath), str(filename)))
155
  progress(1, desc="Gallery updated.")
156
- return gr.update(value=output_images), gr.update(value=output_paths), gr.update(visible=True)
157
 
158
 
159
  def download_private_repo(repo_id, dir_path, is_replace):
 
136
  dt_now = datetime.now(timezone(timedelta(hours=9)))
137
  basename = dt_now.strftime('%Y%m%d_%H%M%S_')
138
  i = 1
139
+ if not images: return images, gr.update(visible=False)
140
  output_images = []
141
  output_paths = []
142
  for image in images:
 
153
  output_paths.append(str(newpath))
154
  output_images.append((str(newpath), str(filename)))
155
  progress(1, desc="Gallery updated.")
156
+ return gr.update(value=output_images), gr.update(value=output_paths, visible=True)
157
 
158
 
159
  def download_private_repo(repo_id, dir_path, is_replace):
requirements.txt CHANGED
@@ -1,7 +1,7 @@
1
- spaces
2
  torch
3
  git+https://github.com/huggingface/diffusers.git@1131e3d04e3131f4c24565257665d75364d696d9
4
- transformers
5
  git+https://github.com/huggingface/peft.git
6
  sentencepiece
7
  torchvision
 
1
+ spaces>=0.30.3
2
  torch
3
  git+https://github.com/huggingface/diffusers.git@1131e3d04e3131f4c24565257665d75364d696d9
4
+ git+https://github.com/huggingface/transformers.git
5
  git+https://github.com/huggingface/peft.git
6
  sentencepiece
7
  torchvision