Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- app.py +34 -16
- live_preview_helpers.py +166 -0
- loras.json +182 -149
app.py
CHANGED
@@ -4,7 +4,8 @@ import json
|
|
4 |
import logging
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
-
from diffusers import DiffusionPipeline
|
|
|
8 |
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
|
9 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
10 |
import copy
|
@@ -21,16 +22,29 @@ from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_
|
|
21 |
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
|
22 |
from tagger.fl2flux import predict_tags_fl2_flux
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Initialize the base model
|
25 |
base_model = models[0]
|
26 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
27 |
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
|
|
|
|
|
28 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
29 |
controlnet_union = None
|
30 |
controlnet = None
|
31 |
last_model = models[0]
|
32 |
last_cn_on = False
|
33 |
|
|
|
|
|
|
|
|
|
34 |
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
|
35 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
36 |
def change_base_model(repo_id: str, cn_on: bool):
|
@@ -39,8 +53,6 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
39 |
global controlnet
|
40 |
global last_model
|
41 |
global last_cn_on
|
42 |
-
dtype = torch.bfloat16
|
43 |
-
#dtype = torch.float8_e4m3fn
|
44 |
try:
|
45 |
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
|
46 |
if cn_on:
|
@@ -50,6 +62,7 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
50 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
51 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
52 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
|
|
53 |
last_model = repo_id
|
54 |
last_cn_on = cn_on
|
55 |
#progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
@@ -59,6 +72,7 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
59 |
print(f"Loading model: {repo_id}")
|
60 |
clear_cache()
|
61 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
|
|
62 |
last_model = repo_id
|
63 |
last_cn_on = cn_on
|
64 |
#progress(1, desc=f"Model loaded: {repo_id}")
|
@@ -70,12 +84,6 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
70 |
|
71 |
change_base_model.zerogpu = True
|
72 |
|
73 |
-
# Load LoRAs from JSON file
|
74 |
-
with open('loras.json', 'r') as f:
|
75 |
-
loras = json.load(f)
|
76 |
-
|
77 |
-
MAX_SEED = 2**32-1
|
78 |
-
|
79 |
class calculateDuration:
|
80 |
def __init__(self, activity_name=""):
|
81 |
self.activity_name = activity_name
|
@@ -126,7 +134,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
126 |
modes, images, scales = get_control_params()
|
127 |
if not cn_on or len(modes) == 0:
|
128 |
progress(0, desc="Start Inference.")
|
129 |
-
|
130 |
prompt=prompt_mash,
|
131 |
num_inference_steps=steps,
|
132 |
guidance_scale=cfg_scale,
|
@@ -134,12 +142,15 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
134 |
height=height,
|
135 |
generator=generator,
|
136 |
joint_attention_kwargs={"scale": lora_scale},
|
137 |
-
|
|
|
|
|
|
|
138 |
else:
|
139 |
progress(0, desc="Start Inference with ControlNet.")
|
140 |
if controlnet is not None: controlnet.to("cuda")
|
141 |
if controlnet_union is not None: controlnet_union.to("cuda")
|
142 |
-
|
143 |
prompt=prompt_mash,
|
144 |
control_image=images,
|
145 |
control_mode=modes,
|
@@ -150,7 +161,10 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
150 |
controlnet_conditioning_scale=scales,
|
151 |
generator=generator,
|
152 |
joint_attention_kwargs={"scale": lora_scale},
|
153 |
-
|
|
|
|
|
|
|
154 |
except Exception as e:
|
155 |
print(e)
|
156 |
raise gr.Error(f"Inference Error: {e}")
|
@@ -197,8 +211,12 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
197 |
seed = random.randint(0, MAX_SEED)
|
198 |
|
199 |
progress(0, desc="Running Inference.")
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
202 |
if is_valid_lora(lora_json):
|
203 |
pipe.unfuse_lora()
|
204 |
pipe.unload_lora_weights()
|
@@ -207,7 +225,7 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
207 |
if controlnet is not None: controlnet.to("cpu")
|
208 |
if controlnet_union is not None: controlnet_union.to("cpu")
|
209 |
clear_cache()
|
210 |
-
return
|
211 |
|
212 |
def get_huggingface_safetensors(link):
|
213 |
split_link = link.split("/")
|
|
|
4 |
import logging
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
8 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
|
10 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
11 |
import copy
|
|
|
22 |
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
|
23 |
from tagger.fl2flux import predict_tags_fl2_flux
|
24 |
|
25 |
+
# Load LoRAs from JSON file
|
26 |
+
with open('loras.json', 'r') as f:
|
27 |
+
loras = json.load(f)
|
28 |
+
|
29 |
+
dtype = torch.bfloat16
|
30 |
+
#dtype = torch.float8_e4m3fn
|
31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
# Initialize the base model
|
33 |
base_model = models[0]
|
34 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
35 |
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
|
36 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
37 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
38 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
39 |
controlnet_union = None
|
40 |
controlnet = None
|
41 |
last_model = models[0]
|
42 |
last_cn_on = False
|
43 |
|
44 |
+
MAX_SEED = 2**32-1
|
45 |
+
|
46 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
47 |
+
|
48 |
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
|
49 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
50 |
def change_base_model(repo_id: str, cn_on: bool):
|
|
|
53 |
global controlnet
|
54 |
global last_model
|
55 |
global last_cn_on
|
|
|
|
|
56 |
try:
|
57 |
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
|
58 |
if cn_on:
|
|
|
62 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
63 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
64 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
65 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
66 |
last_model = repo_id
|
67 |
last_cn_on = cn_on
|
68 |
#progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
|
|
72 |
print(f"Loading model: {repo_id}")
|
73 |
clear_cache()
|
74 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
75 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
76 |
last_model = repo_id
|
77 |
last_cn_on = cn_on
|
78 |
#progress(1, desc=f"Model loaded: {repo_id}")
|
|
|
84 |
|
85 |
change_base_model.zerogpu = True
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
class calculateDuration:
|
88 |
def __init__(self, activity_name=""):
|
89 |
self.activity_name = activity_name
|
|
|
134 |
modes, images, scales = get_control_params()
|
135 |
if not cn_on or len(modes) == 0:
|
136 |
progress(0, desc="Start Inference.")
|
137 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
138 |
prompt=prompt_mash,
|
139 |
num_inference_steps=steps,
|
140 |
guidance_scale=cfg_scale,
|
|
|
142 |
height=height,
|
143 |
generator=generator,
|
144 |
joint_attention_kwargs={"scale": lora_scale},
|
145 |
+
output_type="pil",
|
146 |
+
good_vae=good_vae,
|
147 |
+
):
|
148 |
+
yield img
|
149 |
else:
|
150 |
progress(0, desc="Start Inference with ControlNet.")
|
151 |
if controlnet is not None: controlnet.to("cuda")
|
152 |
if controlnet_union is not None: controlnet_union.to("cuda")
|
153 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
154 |
prompt=prompt_mash,
|
155 |
control_image=images,
|
156 |
control_mode=modes,
|
|
|
161 |
controlnet_conditioning_scale=scales,
|
162 |
generator=generator,
|
163 |
joint_attention_kwargs={"scale": lora_scale},
|
164 |
+
output_type="pil",
|
165 |
+
good_vae=good_vae,
|
166 |
+
):
|
167 |
+
yield img
|
168 |
except Exception as e:
|
169 |
print(e)
|
170 |
raise gr.Error(f"Inference Error: {e}")
|
|
|
211 |
seed = random.randint(0, MAX_SEED)
|
212 |
|
213 |
progress(0, desc="Running Inference.")
|
214 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
|
215 |
+
# Consume the generator to get the final image
|
216 |
+
final_image = None
|
217 |
+
for image in image_generator:
|
218 |
+
final_image = image
|
219 |
+
yield image, seed # Yield intermediate images and seed
|
220 |
if is_valid_lora(lora_json):
|
221 |
pipe.unfuse_lora()
|
222 |
pipe.unload_lora_weights()
|
|
|
225 |
if controlnet is not None: controlnet.to("cpu")
|
226 |
if controlnet_union is not None: controlnet_union.to("cpu")
|
227 |
clear_cache()
|
228 |
+
return final_image, seed # Return the final image and seed
|
229 |
|
230 |
def get_huggingface_safetensors(link):
|
231 |
split_link = link.split("/")
|
live_preview_helpers.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
|
4 |
+
from typing import Any, Dict, List, Optional, Union
|
5 |
+
|
6 |
+
# Helper functions
|
7 |
+
def calculate_shift(
|
8 |
+
image_seq_len,
|
9 |
+
base_seq_len: int = 256,
|
10 |
+
max_seq_len: int = 4096,
|
11 |
+
base_shift: float = 0.5,
|
12 |
+
max_shift: float = 1.16,
|
13 |
+
):
|
14 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
15 |
+
b = base_shift - m * base_seq_len
|
16 |
+
mu = image_seq_len * m + b
|
17 |
+
return mu
|
18 |
+
|
19 |
+
def retrieve_timesteps(
|
20 |
+
scheduler,
|
21 |
+
num_inference_steps: Optional[int] = None,
|
22 |
+
device: Optional[Union[str, torch.device]] = None,
|
23 |
+
timesteps: Optional[List[int]] = None,
|
24 |
+
sigmas: Optional[List[float]] = None,
|
25 |
+
**kwargs,
|
26 |
+
):
|
27 |
+
if timesteps is not None and sigmas is not None:
|
28 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
29 |
+
if timesteps is not None:
|
30 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
31 |
+
timesteps = scheduler.timesteps
|
32 |
+
num_inference_steps = len(timesteps)
|
33 |
+
elif sigmas is not None:
|
34 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
35 |
+
timesteps = scheduler.timesteps
|
36 |
+
num_inference_steps = len(timesteps)
|
37 |
+
else:
|
38 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
39 |
+
timesteps = scheduler.timesteps
|
40 |
+
return timesteps, num_inference_steps
|
41 |
+
|
42 |
+
# FLUX pipeline function
|
43 |
+
@torch.inference_mode()
|
44 |
+
def flux_pipe_call_that_returns_an_iterable_of_images(
|
45 |
+
self,
|
46 |
+
prompt: Union[str, List[str]] = None,
|
47 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
48 |
+
height: Optional[int] = None,
|
49 |
+
width: Optional[int] = None,
|
50 |
+
num_inference_steps: int = 28,
|
51 |
+
timesteps: List[int] = None,
|
52 |
+
guidance_scale: float = 3.5,
|
53 |
+
num_images_per_prompt: Optional[int] = 1,
|
54 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
55 |
+
latents: Optional[torch.FloatTensor] = None,
|
56 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
+
output_type: Optional[str] = "pil",
|
59 |
+
return_dict: bool = True,
|
60 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
+
max_sequence_length: int = 512,
|
62 |
+
good_vae: Optional[Any] = None,
|
63 |
+
):
|
64 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
65 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
66 |
+
|
67 |
+
# 1. Check inputs
|
68 |
+
self.check_inputs(
|
69 |
+
prompt,
|
70 |
+
prompt_2,
|
71 |
+
height,
|
72 |
+
width,
|
73 |
+
prompt_embeds=prompt_embeds,
|
74 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
75 |
+
max_sequence_length=max_sequence_length,
|
76 |
+
)
|
77 |
+
|
78 |
+
self._guidance_scale = guidance_scale
|
79 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
80 |
+
self._interrupt = False
|
81 |
+
|
82 |
+
# 2. Define call parameters
|
83 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
84 |
+
device = self._execution_device
|
85 |
+
|
86 |
+
# 3. Encode prompt
|
87 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
88 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
89 |
+
prompt=prompt,
|
90 |
+
prompt_2=prompt_2,
|
91 |
+
prompt_embeds=prompt_embeds,
|
92 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
93 |
+
device=device,
|
94 |
+
num_images_per_prompt=num_images_per_prompt,
|
95 |
+
max_sequence_length=max_sequence_length,
|
96 |
+
lora_scale=lora_scale,
|
97 |
+
)
|
98 |
+
# 4. Prepare latent variables
|
99 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
100 |
+
latents, latent_image_ids = self.prepare_latents(
|
101 |
+
batch_size * num_images_per_prompt,
|
102 |
+
num_channels_latents,
|
103 |
+
height,
|
104 |
+
width,
|
105 |
+
prompt_embeds.dtype,
|
106 |
+
device,
|
107 |
+
generator,
|
108 |
+
latents,
|
109 |
+
)
|
110 |
+
# 5. Prepare timesteps
|
111 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
112 |
+
image_seq_len = latents.shape[1]
|
113 |
+
mu = calculate_shift(
|
114 |
+
image_seq_len,
|
115 |
+
self.scheduler.config.base_image_seq_len,
|
116 |
+
self.scheduler.config.max_image_seq_len,
|
117 |
+
self.scheduler.config.base_shift,
|
118 |
+
self.scheduler.config.max_shift,
|
119 |
+
)
|
120 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
121 |
+
self.scheduler,
|
122 |
+
num_inference_steps,
|
123 |
+
device,
|
124 |
+
timesteps,
|
125 |
+
sigmas,
|
126 |
+
mu=mu,
|
127 |
+
)
|
128 |
+
self._num_timesteps = len(timesteps)
|
129 |
+
|
130 |
+
# Handle guidance
|
131 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
132 |
+
|
133 |
+
# 6. Denoising loop
|
134 |
+
for i, t in enumerate(timesteps):
|
135 |
+
if self.interrupt:
|
136 |
+
continue
|
137 |
+
|
138 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
139 |
+
|
140 |
+
noise_pred = self.transformer(
|
141 |
+
hidden_states=latents,
|
142 |
+
timestep=timestep / 1000,
|
143 |
+
guidance=guidance,
|
144 |
+
pooled_projections=pooled_prompt_embeds,
|
145 |
+
encoder_hidden_states=prompt_embeds,
|
146 |
+
txt_ids=text_ids,
|
147 |
+
img_ids=latent_image_ids,
|
148 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
149 |
+
return_dict=False,
|
150 |
+
)[0]
|
151 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
152 |
+
|
153 |
+
# Yield intermediate result
|
154 |
+
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
155 |
+
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
156 |
+
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
157 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
158 |
+
torch.cuda.empty_cache()
|
159 |
+
|
160 |
+
# Final image using good_vae
|
161 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
162 |
+
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
163 |
+
image = good_vae.decode(latents, return_dict=False)[0]
|
164 |
+
self.maybe_free_model_hooks()
|
165 |
+
torch.cuda.empty_cache()
|
166 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
loras.json
CHANGED
@@ -1,150 +1,183 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"image": "https://cdn-uploads.huggingface.co/production/uploads/641498f7479c98a0b36f9e3e/2hT_tW_DCcF60lNyCBE_8.png",
|
4 |
-
"title": "Abe Shinzo Flux",
|
5 |
-
"repo": "AbeShinzo0708/AbeShinzo_flux_lora_test",
|
6 |
-
"weights": "AbeShinzo.safetensors",
|
7 |
-
"trigger_word": ", Shinzo Abe"
|
8 |
-
},
|
9 |
-
{
|
10 |
-
"image": "https://huggingface.co/p1atdev/flux.1-schnell-pvc-style-lora/resolve/main/images/flux_lora_00221_.png",
|
11 |
-
"title": "FLUX.1 schnell PVC style",
|
12 |
-
"repo": "p1atdev/flux.1-schnell-pvc-style-lora",
|
13 |
-
"weights": "pvc-shnell-7250+7500.safetensors",
|
14 |
-
"trigger_word": ", pvc figure"
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"image": "https://cdn-uploads.huggingface.co/production/uploads/64b24543eec33e27dc9a6eca/sCvp6zDbBTXBEHh3ZSav6.png",
|
18 |
-
"title": "Flux Pastel Anime",
|
19 |
-
"repo": "Raelina/Flux-Pastel-Anime",
|
20 |
-
"weights": "lora_pastel_anime_flux.safetensors",
|
21 |
-
"trigger_word": ""
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"image": "https://huggingface.co/wavymulder/OverlordStyleFLUX/resolve/main/imgs/ComfyUI_00725_.png",
|
25 |
-
"title": "Overlord Style FLUX",
|
26 |
-
"repo": "wavymulder/OverlordStyleFLUX",
|
27 |
-
"weights": "ovld_style_overlord_wavymulder.safetensors",
|
28 |
-
"trigger_word": ", ovld style anime"
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"image": "https://huggingface.co/multimodalart/flux-tarot-v1/resolve/main/images/e5f2761e5d474e6ba492d20dca0fa26f_e78f1524074b42b6ac49643ffad50ac6.png",
|
32 |
-
"title": "Tarot v1",
|
33 |
-
"repo": "multimodalart/flux-tarot-v1",
|
34 |
-
"trigger_word": "in the style of TOK a trtcrd, tarot style",
|
35 |
-
"aspect": "portrait"
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"image": "https://huggingface.co/alvdansen/
|
39 |
-
"title": "
|
40 |
-
"repo": "alvdansen/
|
41 |
-
"trigger_word": ""
|
42 |
-
},
|
43 |
-
{
|
44 |
-
"image": "https://huggingface.co/AIWarper/RubberCore1920sCartoonStyle/resolve/main/images/Rub_00006_.png",
|
45 |
-
"title": "1920s cartoon",
|
46 |
-
"repo": "AIWarper/RubberCore1920sCartoonStyle",
|
47 |
-
"trigger_word": "RU883R style",
|
48 |
-
"trigger_position": "prepend"
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"image": "https://
|
52 |
-
"title": "
|
53 |
-
"repo": "
|
54 |
-
"trigger_word": ""
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
"
|
65 |
-
"
|
66 |
-
"
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
"
|
71 |
-
"
|
72 |
-
"
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
"
|
78 |
-
"
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
"
|
84 |
-
"
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
"
|
90 |
-
"
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
"
|
96 |
-
"
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
"
|
102 |
-
"
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
"
|
108 |
-
"
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
"
|
114 |
-
"
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
"
|
120 |
-
"
|
121 |
-
"
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
"
|
126 |
-
"
|
127 |
-
"
|
128 |
-
"trigger_word": "
|
129 |
-
},
|
130 |
-
{
|
131 |
-
"image": "https://
|
132 |
-
"title": "
|
133 |
-
"repo": "
|
134 |
-
"
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
"
|
139 |
-
"
|
140 |
-
"
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
"
|
146 |
-
"
|
147 |
-
"
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
]
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"image": "https://cdn-uploads.huggingface.co/production/uploads/641498f7479c98a0b36f9e3e/2hT_tW_DCcF60lNyCBE_8.png",
|
4 |
+
"title": "Abe Shinzo Flux",
|
5 |
+
"repo": "AbeShinzo0708/AbeShinzo_flux_lora_test",
|
6 |
+
"weights": "AbeShinzo.safetensors",
|
7 |
+
"trigger_word": ", Shinzo Abe"
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"image": "https://huggingface.co/p1atdev/flux.1-schnell-pvc-style-lora/resolve/main/images/flux_lora_00221_.png",
|
11 |
+
"title": "FLUX.1 schnell PVC style",
|
12 |
+
"repo": "p1atdev/flux.1-schnell-pvc-style-lora",
|
13 |
+
"weights": "pvc-shnell-7250+7500.safetensors",
|
14 |
+
"trigger_word": ", pvc figure"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"image": "https://cdn-uploads.huggingface.co/production/uploads/64b24543eec33e27dc9a6eca/sCvp6zDbBTXBEHh3ZSav6.png",
|
18 |
+
"title": "Flux Pastel Anime",
|
19 |
+
"repo": "Raelina/Flux-Pastel-Anime",
|
20 |
+
"weights": "lora_pastel_anime_flux.safetensors",
|
21 |
+
"trigger_word": ""
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"image": "https://huggingface.co/wavymulder/OverlordStyleFLUX/resolve/main/imgs/ComfyUI_00725_.png",
|
25 |
+
"title": "Overlord Style FLUX",
|
26 |
+
"repo": "wavymulder/OverlordStyleFLUX",
|
27 |
+
"weights": "ovld_style_overlord_wavymulder.safetensors",
|
28 |
+
"trigger_word": ", ovld style anime"
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"image": "https://huggingface.co/multimodalart/flux-tarot-v1/resolve/main/images/e5f2761e5d474e6ba492d20dca0fa26f_e78f1524074b42b6ac49643ffad50ac6.png",
|
32 |
+
"title": "Tarot v1",
|
33 |
+
"repo": "multimodalart/flux-tarot-v1",
|
34 |
+
"trigger_word": "in the style of TOK a trtcrd, tarot style",
|
35 |
+
"aspect": "portrait"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"image": "https://huggingface.co/alvdansen/softpasty-flux-dev/resolve/main/images/ComfyUI_00814_%20(2).png",
|
39 |
+
"title": "SoftPasty",
|
40 |
+
"repo": "alvdansen/softpasty-flux-dev",
|
41 |
+
"trigger_word": "araminta_illus illustration style"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"image": "https://huggingface.co/AIWarper/RubberCore1920sCartoonStyle/resolve/main/images/Rub_00006_.png",
|
45 |
+
"title": "1920s cartoon",
|
46 |
+
"repo": "AIWarper/RubberCore1920sCartoonStyle",
|
47 |
+
"trigger_word": "RU883R style",
|
48 |
+
"trigger_position": "prepend"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"image": "https://huggingface.co/mgwr/Cine-Aesthetic/resolve/main/images/00030-1333633802.png",
|
52 |
+
"title": "Cine Aesthetic",
|
53 |
+
"repo": "mgwr/Cine-Aesthetic",
|
54 |
+
"trigger_word": "mgwr/cine",
|
55 |
+
"trigger_position": "prepend"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"image": "https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration/resolve/main/images/example3.png",
|
59 |
+
"title": "Blended Realistic Illustration",
|
60 |
+
"repo": "Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration",
|
61 |
+
"trigger_word": "artistic style blends reality and illustration elements"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/picture-6-rev1.png?raw=true",
|
65 |
+
"title": "flux-Realism",
|
66 |
+
"repo": "XLabs-AI/flux-RealismLora",
|
67 |
+
"trigger_word": ""
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"image": "https://huggingface.co/multimodalart/vintage-ads-flux/resolve/main/samples/j_XNU6Oe0mgttyvf9uPb3_dc244dd3d6c246b4aff8351444868d66.png",
|
71 |
+
"title": "Vintage Ads",
|
72 |
+
"repo":"multimodalart/vintage-ads-flux",
|
73 |
+
"trigger_word": "a vintage ad of",
|
74 |
+
"trigger_position": "prepend"
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"image": "https://huggingface.co/nerijs/animation2k-flux/resolve/main/images/Q8-oVxNnXvZ9HNrgbNpGw_02762aaaba3b47859ee5fe9403a371e3.png",
|
78 |
+
"title": "animation2k",
|
79 |
+
"repo": "nerijs/animation2k-flux",
|
80 |
+
"trigger_word": ""
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"image":"https://huggingface.co/alvdansen/softserve_anime/resolve/main/images/ComfyUI_00062_.png",
|
84 |
+
"title":"SoftServe Anime",
|
85 |
+
"repo": "alvdansen/softserve_anime",
|
86 |
+
"trigger_word": ""
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"image": "https://huggingface.co/veryVANYA/ps1-style-flux/resolve/main/24439220.jpeg",
|
90 |
+
"title": "PS1 style",
|
91 |
+
"repo": "veryVANYA/ps1-style-flux",
|
92 |
+
"trigger_word": "ps1 game screenshot"
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"image": "https://huggingface.co/alvdansen/flux-koda/resolve/main/images/ComfyUI_00566_%20(2).png",
|
96 |
+
"title": "flux koda",
|
97 |
+
"repo": "alvdansen/flux-koda",
|
98 |
+
"trigger_word": "flmft style"
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"image": "https://huggingface.co/alvdansen/frosting_lane_flux/resolve/main/images/content%20-%202024-08-11T005936.346.jpeg",
|
102 |
+
"title": "Frosting Lane Flux",
|
103 |
+
"repo": "alvdansen/frosting_lane_flux",
|
104 |
+
"trigger_word": ""
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"image": "https://pbs.twimg.com/media/GU7NsZPa8AA4Ddl?format=jpg&name=4096x4096",
|
108 |
+
"title": "Half Illustration",
|
109 |
+
"repo": "davisbro/half_illustration",
|
110 |
+
"trigger_word": "in the style of TOK"
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"image":"https://pbs.twimg.com/media/GVRiSH7WgAAnI4P?format=jpg&name=medium",
|
114 |
+
"title":"wrong",
|
115 |
+
"repo": "fofr/flux-wrong",
|
116 |
+
"trigger_word": "WRNG"
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"image":"https://huggingface.co/linoyts/yarn_art_Flux_LoRA/resolve/main/yarn_art_2.png",
|
120 |
+
"title":"Yarn Art",
|
121 |
+
"repo": "linoyts/yarn_art_Flux_LoRA",
|
122 |
+
"trigger_word": ", yarn art style"
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"image": "https://huggingface.co/Norod78/Flux_1_Dev_LoRA_Paper-Cutout-Style/resolve/main/08a19840b6214b76b0607b2f9d5a7e28_63159b9d98124c008efb1d36446a615c.png",
|
126 |
+
"title": "Paper Cutout",
|
127 |
+
"repo": "Norod78/Flux_1_Dev_LoRA_Paper-Cutout-Style",
|
128 |
+
"trigger_word": ", Paper Cutout Style"
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"image": "https://huggingface.co/SebastianBodza/flux_lora_aquarel_watercolor/resolve/main/images/ascend.webp",
|
132 |
+
"title": "Aquarell Watercolor",
|
133 |
+
"repo": "SebastianBodza/Flux_Aquarell_Watercolor_v2",
|
134 |
+
"trigger_word": "in a watercolor style, AQUACOLTOK. White background."
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"image": "https://huggingface.co/dataautogpt3/FLUX-SyntheticAnime/resolve/main/assets/angel.png",
|
138 |
+
"title": "SyntheticAnime",
|
139 |
+
"repo": "dataautogpt3/FLUX-SyntheticAnime",
|
140 |
+
"trigger_word": "1980s anime screengrab, VHS quality"
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_14.png?raw=true",
|
144 |
+
"title": "flux-anime",
|
145 |
+
"repo": "XLabs-AI/flux-lora-collection",
|
146 |
+
"weights": "anime_lora.safetensors",
|
147 |
+
"trigger_word": ", anime"
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"image": "https://replicate.delivery/yhqm/QD8Ioy5NExqSCtBS8hG04XIRQZFaC9pxJemINT1bibyjZfSTA/out-0.webp",
|
151 |
+
"title": "80s Cyberpunk",
|
152 |
+
"repo": "fofr/flux-80s-cyberpunk",
|
153 |
+
"trigger_word": "style of 80s cyberpunk",
|
154 |
+
"trigger_position": "prepend"
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"image": "https://huggingface.co/kudzueye/Boreal/resolve/main/images/ComfyUI_00845_.png",
|
158 |
+
"title": "Boreal",
|
159 |
+
"repo": "kudzueye/Boreal",
|
160 |
+
"weights": "boreal-flux-dev-lora-v04_1000_steps.safetensors",
|
161 |
+
"trigger_word": "phone photo"
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_18.png?raw=true",
|
165 |
+
"title": "flux-disney",
|
166 |
+
"repo": "XLabs-AI/flux-lora-collection",
|
167 |
+
"weights": "disney_lora.safetensors",
|
168 |
+
"trigger_word": ", disney style"
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/result_23.png?raw=true",
|
172 |
+
"title": "flux-art",
|
173 |
+
"repo": "XLabs-AI/flux-lora-collection",
|
174 |
+
"weights": "art_lora.safetensors",
|
175 |
+
"trigger_word": ", art"
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"image": "https://huggingface.co/martintomov/retrofuturism-flux/resolve/main/images/2e40deba-858e-454f-ae1c-d1ba2adb6a65.jpeg",
|
179 |
+
"title": "Retrofuturism Flux",
|
180 |
+
"repo": "martintomov/retrofuturism-flux",
|
181 |
+
"trigger_word": ", retrofuturism"
|
182 |
+
}
|
183 |
]
|