Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ torch.set_float32_matmul_precision("high")
|
|
15 |
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
16 |
#REPO_ID = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
17 |
REPO_ID = "nicoboss/DeepSeek-R1-Distill-Qwen-32B-Uncensored"
|
|
|
18 |
|
19 |
DESCRIPTION = f'''
|
20 |
<div>
|
@@ -49,11 +50,10 @@ if torch.cuda.is_available():
|
|
49 |
model = AutoModelForCausalLM.from_pretrained(REPO_ID, device_map="auto", quantization_config=nf4_config)
|
50 |
else: model = AutoModelForCausalLM.from_pretrained(REPO_ID, torch_dtype=torch.float32)
|
51 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
52 |
-
flush()
|
53 |
|
54 |
@spaces.GPU(duration=59)
|
55 |
@torch.inference_mode()
|
56 |
-
def
|
57 |
history: list[dict],
|
58 |
temperature: float,
|
59 |
max_new_tokens: int,
|
@@ -70,11 +70,15 @@ def chat(message: str,
|
|
70 |
messages.append({"role": "system", "content": sys_prompt})
|
71 |
messages.append({"role": "user", "content": message})
|
72 |
|
73 |
-
input_tensors = tokenizer.apply_chat_template([{"role": x["role"], "content": x["content"]} for x in history
|
74 |
|
75 |
input_ids = input_tensors["input_ids"]
|
76 |
attention_mask = input_tensors["attention_mask"]
|
77 |
|
|
|
|
|
|
|
|
|
78 |
generate_kwargs = dict(
|
79 |
input_ids=input_ids,
|
80 |
attention_mask=attention_mask,
|
@@ -102,10 +106,60 @@ def chat(message: str,
|
|
102 |
finally:
|
103 |
flush()
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
with gr.Blocks(fill_height=True, fill_width=True, css=css) as demo:
|
106 |
gr.Markdown(DESCRIPTION)
|
107 |
gr.ChatInterface(
|
108 |
-
fn=
|
109 |
type="messages",
|
110 |
chatbot=gr.Chatbot(height=450, type="messages", placeholder=PLACEHOLDER, label='Gradio ChatInterface'),
|
111 |
fill_height=True,
|
|
|
15 |
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
16 |
#REPO_ID = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
17 |
REPO_ID = "nicoboss/DeepSeek-R1-Distill-Qwen-32B-Uncensored"
|
18 |
+
#REPO_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
19 |
|
20 |
DESCRIPTION = f'''
|
21 |
<div>
|
|
|
50 |
model = AutoModelForCausalLM.from_pretrained(REPO_ID, device_map="auto", quantization_config=nf4_config)
|
51 |
else: model = AutoModelForCausalLM.from_pretrained(REPO_ID, torch_dtype=torch.float32)
|
52 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
53 |
|
54 |
@spaces.GPU(duration=59)
|
55 |
@torch.inference_mode()
|
56 |
+
def chat_stream(message: str,
|
57 |
history: list[dict],
|
58 |
temperature: float,
|
59 |
max_new_tokens: int,
|
|
|
70 |
messages.append({"role": "system", "content": sys_prompt})
|
71 |
messages.append({"role": "user", "content": message})
|
72 |
|
73 |
+
input_tensors = tokenizer.apply_chat_template([{"role": x["role"], "content": x["content"]} for x in history + messages if "role" in x.keys()], add_generation_prompt=True, return_dict=True, add_special_tokens=False, return_tensors="pt").to(model.device)
|
74 |
|
75 |
input_ids = input_tensors["input_ids"]
|
76 |
attention_mask = input_tensors["attention_mask"]
|
77 |
|
78 |
+
#print("history: ", [{"role": x["role"], "content": x["content"]} for x in history if "role" in x.keys()])
|
79 |
+
#print("messages: ", [{"role": x["role"], "content": x["content"]} for x in messages if "role" in x.keys()])
|
80 |
+
#print("tokenized: ", tokenizer.apply_chat_template([{"role": x["role"], "content": x["content"]} for x in history + messages if "role" in x.keys()], add_generation_prompt=True, add_special_tokens=False, tokenize=False))
|
81 |
+
|
82 |
generate_kwargs = dict(
|
83 |
input_ids=input_ids,
|
84 |
attention_mask=attention_mask,
|
|
|
106 |
finally:
|
107 |
flush()
|
108 |
|
109 |
+
@spaces.GPU(duration=59)
|
110 |
+
@torch.inference_mode()
|
111 |
+
def chat(message: str,
|
112 |
+
history: list[dict],
|
113 |
+
temperature: float,
|
114 |
+
max_new_tokens: int,
|
115 |
+
top_p: float,
|
116 |
+
top_k: int,
|
117 |
+
repetition_penalty: float,
|
118 |
+
sys_prompt: str,
|
119 |
+
progress=gr.Progress(track_tqdm=True)
|
120 |
+
):
|
121 |
+
try:
|
122 |
+
messages = []
|
123 |
+
response = []
|
124 |
+
if not history: history = []
|
125 |
+
messages.append({"role": "system", "content": sys_prompt})
|
126 |
+
messages.append({"role": "user", "content": message})
|
127 |
+
|
128 |
+
input_tensors = tokenizer.apply_chat_template([{"role": x["role"], "content": x["content"]} for x in history + messages if "role" in x.keys()], add_generation_prompt=True, return_dict=True, add_special_tokens=False, return_tensors="pt").to(model.device)
|
129 |
+
|
130 |
+
input_ids = input_tensors["input_ids"]
|
131 |
+
attention_mask = input_tensors["attention_mask"]
|
132 |
+
|
133 |
+
generate_kwargs = dict(
|
134 |
+
input_ids=input_ids,
|
135 |
+
attention_mask=attention_mask,
|
136 |
+
max_new_tokens=max_new_tokens,
|
137 |
+
do_sample=True,
|
138 |
+
temperature=temperature,
|
139 |
+
top_k=top_k,
|
140 |
+
top_p=top_p,
|
141 |
+
repetition_penalty=repetition_penalty,
|
142 |
+
pad_token_id=tokenizer.eos_token_id,
|
143 |
+
)
|
144 |
+
if temperature == 0: generate_kwargs['do_sample'] = False
|
145 |
+
response.append({"role": "assistant", "content": ""})
|
146 |
+
|
147 |
+
output_ids = model.generate(**generate_kwargs)
|
148 |
+
output = tokenizer.decode(output_ids.tolist()[0][input_ids.size(1) :], skip_special_tokens=True)
|
149 |
+
|
150 |
+
response[-1]["content"] = output
|
151 |
+
return response
|
152 |
+
except Exception as e:
|
153 |
+
print(e)
|
154 |
+
gr.Warning(f"Error: {e}")
|
155 |
+
return response
|
156 |
+
finally:
|
157 |
+
flush()
|
158 |
+
|
159 |
with gr.Blocks(fill_height=True, fill_width=True, css=css) as demo:
|
160 |
gr.Markdown(DESCRIPTION)
|
161 |
gr.ChatInterface(
|
162 |
+
fn=chat_stream,
|
163 |
type="messages",
|
164 |
chatbot=gr.Chatbot(height=450, type="messages", placeholder=PLACEHOLDER, label='Gradio ChatInterface'),
|
165 |
fill_height=True,
|