|
import gradio as gr
|
|
import os
|
|
from all_models import models
|
|
from externalmod import gr_Interface_load, save_image, randomize_seed
|
|
from prompt_extend import extend_prompt
|
|
import asyncio
|
|
from threading import RLock
|
|
lock = RLock()
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
|
|
|
|
inference_timeout = 300
|
|
MAX_SEED = 2**32-1
|
|
current_model = models[0]
|
|
text_gen1 = extend_prompt
|
|
|
|
models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models]
|
|
|
|
def text_it1(inputs, text_gen1=text_gen1):
|
|
go_t1 = text_gen1(inputs)
|
|
return(go_t1)
|
|
|
|
def set_model(current_model):
|
|
current_model = models[current_model]
|
|
return gr.update(label=(f"{current_model}"))
|
|
|
|
def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed):
|
|
output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed)
|
|
return (output1)
|
|
|
|
|
|
|
|
async def infer(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
|
|
kwargs = {}
|
|
if height > 0: kwargs["height"] = height
|
|
if width > 0: kwargs["width"] = width
|
|
if steps > 0: kwargs["num_inference_steps"] = steps
|
|
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
|
if seed == -1: kwargs["seed"] = randomize_seed()
|
|
else: kwargs["seed"] = seed
|
|
task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
|
|
prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
|
|
await asyncio.sleep(0)
|
|
try:
|
|
result = await asyncio.wait_for(task, timeout=timeout)
|
|
except asyncio.TimeoutError as e:
|
|
print(e)
|
|
print(f"Task timed out: {models[model_index]}")
|
|
if not task.done(): task.cancel()
|
|
result = None
|
|
raise Exception(f"Task timed out: {models[model_index]}") from e
|
|
except Exception as e:
|
|
print(e)
|
|
if not task.done(): task.cancel()
|
|
result = None
|
|
raise Exception() from e
|
|
if task.done() and result is not None and not isinstance(result, tuple):
|
|
with lock:
|
|
png_path = "image.png"
|
|
image = save_image(result, png_path, models[model_index], prompt, nprompt, height, width, steps, cfg, seed)
|
|
return image
|
|
return None
|
|
|
|
def gen_fn(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
|
|
try:
|
|
loop = asyncio.new_event_loop()
|
|
result = loop.run_until_complete(infer(model_index, prompt, nprompt,
|
|
height, width, steps, cfg, seed, inference_timeout))
|
|
except (Exception, asyncio.CancelledError) as e:
|
|
print(e)
|
|
print(f"Task aborted: {models[model_index]}")
|
|
result = None
|
|
raise gr.Error(f"Task aborted: {models[model_index]}, Error: {e}")
|
|
finally:
|
|
loop.close()
|
|
return result
|
|
|
|
css="""
|
|
.gradio-container {background-image: linear-gradient(#254150, #1e2f40, #182634) !important;
|
|
color: #ffaa66 !important; font-family: 'IBM Plex Sans', sans-serif !important;}
|
|
h1 {font-size: 6em; color: #ffc99f; margin-top: 30px; margin-bottom: 30px;
|
|
text-shadow: 3px 3px 0 rgba(0, 0, 0, 1) !important;}
|
|
h3 {color: #ffc99f; !important;}
|
|
h4 {display: inline-block; color: #ffffff !important;}
|
|
.wrapper img {font-size: 98% !important; white-space: nowrap !important; text-align: center !important;
|
|
display: inline-block !important; color: #ffffff !important;}
|
|
.wrapper {color: #ffffff !important;}
|
|
.gr-box {background-image: linear-gradient(#182634, #1e2f40, #254150) !important;
|
|
border-top-color: #000000 !important; border-right-color: #ffffff !important;
|
|
border-bottom-color: #ffffff !important; border-left-color: #000000 !important;}
|
|
"""
|
|
|
|
with gr.Blocks(theme='John6666/YntecDark', fill_width=True, css=css) as myface:
|
|
gr.HTML(f"""
|
|
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
|
|
<div class="center"><h1>Blitz Diffusion</h1></div>
|
|
<p style="margin-bottom: 1px; color: #ffaa66;">
|
|
<h3>{int(len(models))} Stable Diffusion models, but why? For your enjoyment!</h3></p>
|
|
<br><div class="wrapper">9.3 <img src="https://huggingface.co/Yntec/DucHaitenLofi/resolve/main/NEW.webp" alt="NEW!" style="width:32px;height:16px;">This has become a legacy backup copy of old <u><a href="https://huggingface.co/spaces/Yntec/ToyWorld">ToyWorld</a></u>'s UI! Newer models added dailty over there! 25 new models since last update!</div>
|
|
<p style="margin-bottom: 1px; font-size: 98%">
|
|
<br><h4>If a model is already loaded each new image takes less than <b>10</b> seconds to generate!</h4></p>
|
|
<p style="margin-bottom: 1px; color: #ffffff;">
|
|
<br><div class="wrapper">Generate 6 images from 1 prompt at the <u><a href="https://huggingface.co/spaces/Yntec/PrintingPress">PrintingPress</a></u>, and use 6 different models at <u><a href="https://huggingface.co/spaces/Yntec/diffusion80xx">Huggingface Diffusion!</a></u>!
|
|
</p></p></div>
|
|
""", elem_classes="gr-box")
|
|
with gr.Row():
|
|
with gr.Column(scale=100):
|
|
|
|
model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index",
|
|
value=current_model, interactive=True, elem_classes=["gr-box", "gr-input"])
|
|
with gr.Row():
|
|
with gr.Column(scale=100):
|
|
with gr.Group():
|
|
magic1 = gr.Textbox(label="Your Prompt", lines=4, elem_classes=["gr-box", "gr-input"])
|
|
with gr.Accordion("Advanced", open=False, visible=True):
|
|
neg_input = gr.Textbox(label='Negative prompt', lines=1, elem_classes=["gr-box", "gr-input"])
|
|
with gr.Row():
|
|
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
|
|
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
|
|
with gr.Row():
|
|
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, elem_classes=["gr-box", "gr-input"])
|
|
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=-1, elem_classes=["gr-box", "gr-input"])
|
|
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes=["gr-box", "gr-input"])
|
|
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
|
|
run = gr.Button("Generate Image", variant="primary", elem_classes="gr-button")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
output1 = gr.Image(label=(f"{current_model}"), show_download_button=True,
|
|
interactive=False, show_share_button=False, format=".png", elem_classes="gr-box")
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=50):
|
|
input_text=gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2, elem_classes=["gr-box", "gr-input"])
|
|
see_prompts=gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
|
|
use_short=gr.Button("Copy the contents of this box to the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
|
|
def short_prompt(inputs):
|
|
return (inputs)
|
|
|
|
model_name1.change(set_model, inputs=model_name1, outputs=[output1])
|
|
gr.on(
|
|
triggers=[run.click, magic1.submit],
|
|
fn=send_it1,
|
|
inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed],
|
|
outputs=[output1],
|
|
concurrency_limit=None,
|
|
queue=False,
|
|
)
|
|
use_short.click(short_prompt, inputs=[input_text], outputs=magic1)
|
|
see_prompts.click(text_it1, inputs=[input_text], outputs=magic1)
|
|
seed_rand.click(randomize_seed, None, [seed], queue=False)
|
|
|
|
|
|
myface.launch(show_api=False, max_threads=400)
|
|
|
|
|