victormiller
commited on
Commit
•
aa13e37
1
Parent(s):
ae1d7f9
Update web.py
Browse files
web.py
CHANGED
@@ -612,11 +612,59 @@ def web_data():
|
|
612 |
but longer duplicate passages. To achieve this goal, we calculate over the document both the fraction of passages
|
613 |
that are duplicates, and the fraction of characters contained within those duplicated passages.
|
614 |
"""),
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
620 |
P("""
|
621 |
After evaluating the implementations of Dolma and DataTrove (note: RedPajama V2 does not implement these two quality
|
622 |
signals), we have made the following decisions:
|
@@ -639,6 +687,25 @@ def web_data():
|
|
639 |
ensures consistency with the overall document character count calculation.
|
640 |
"""),
|
641 |
H5("Our Implementation"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
642 |
Details(
|
643 |
Summary("Sample documents filtered by excessive line repetitions / characters in repeated lines"),
|
644 |
DV(
|
@@ -652,12 +719,85 @@ def web_data():
|
|
652 |
Following Gopher [2], we remove documents with a high portion of n-grams. For each n ∈ (2, 3, 4), we calculate the
|
653 |
fraction of characters contained within the most frequently-occurring n-gram.
|
654 |
"""),
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
661 |
P("""
|
662 |
There are almost no contradictions between above implementations of fractions of characters in the most common
|
663 |
n-gram. The main process involves counting the occurrences of each n-gram and selecting the most common one. The
|
@@ -668,7 +808,23 @@ def web_data():
|
|
668 |
In practice, documents affected by this rule — where the most common n-gram exceeds a given threshold and occurs
|
669 |
only once — tend to be short.
|
670 |
"""),
|
671 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
672 |
Details(
|
673 |
Summary("Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)"),
|
674 |
DV(
|
@@ -683,27 +839,172 @@ def web_data():
|
|
683 |
fraction of characters contained within all duplicate n-grams, taking care not to count characters that occur in
|
684 |
overlapping n-grams more than once.
|
685 |
"""),
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
P("""
|
693 |
For the computation of fraction of characters in duplicate n-gram, Dolma uses the number of characters in all
|
694 |
n-grams (with overlapping) as the denominator, and uses the number of characters in all duplicated n-grams
|
695 |
-
(with overlapping) as the numerator.
|
|
|
696 |
(without overlapping) as the denominator, and uses the number of characters that are recognized as part of the
|
697 |
-
duplicate n-gram as the numerator.
|
|
|
698 |
spaces, without overlapping) as the denominator, and uses the number of characters that are recognized as
|
699 |
duplicate n-gram as the numerator. However, there is a mismatch in DataTrove’s calculation, as the number of
|
700 |
characters in the duplicated n-grams excludes white spaces, while the total character count of the document
|
701 |
-
does not.
|
702 |
-
|
|
|
703 |
"""),
|
704 |
-
|
705 |
-
|
706 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
707 |
H5(
|
708 |
"Sample Documents Filtered by the Fraction of Characters in Duplicated N-grams (n=5,...,10)"
|
709 |
),
|
@@ -722,6 +1023,71 @@ def web_data():
|
|
722 |
works ([2], [3], [6]), we remove the documents if more than 30% of the lines end with an ellipsis or more than
|
723 |
90% of lines start with a bullet point.
|
724 |
"""),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
725 |
Details(
|
726 |
Summary("Sample documents that are filtered out by line-wise heuristics"),
|
727 |
DV(
|
@@ -730,6 +1096,7 @@ def web_data():
|
|
730 |
"Sample documents that are filtered out by line-wise heuristics",
|
731 |
),
|
732 |
),
|
|
|
733 |
H4("3.3 Statistics-based Heuristics"),
|
734 |
P("We summarize other statistics-based rules originated from Gopher [7] in this section. The statistics can be used include:"),
|
735 |
Ul(
|
@@ -753,17 +1120,51 @@ def web_data():
|
|
753 |
Details(
|
754 |
Summary("Implementations from Dolma"),
|
755 |
D_code("""
|
|
|
|
|
756 |
""", block="block", language="python"),
|
757 |
),
|
758 |
Details(
|
759 |
Summary("Implementations from RedPajama-V2"),
|
760 |
D_code("""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
761 |
""", block="block", language="python"),
|
762 |
),
|
763 |
|
764 |
Details(
|
765 |
Summary("Implementations from DataTrove"),
|
766 |
D_code("""
|
|
|
|
|
|
|
|
|
|
|
767 |
""", block="block", language="python"),
|
768 |
),
|
769 |
P("""
|
@@ -798,6 +1199,16 @@ def web_data():
|
|
798 |
Details(
|
799 |
Summary("Implementations from RedPajama-V2"),
|
800 |
D_code("""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
801 |
""", block="block", language="python"),
|
802 |
),
|
803 |
P("""
|
@@ -807,6 +1218,13 @@ def web_data():
|
|
807 |
Details(
|
808 |
Summary("TxT360 Implementation"),
|
809 |
D_code("""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
810 |
""", block="block", language="python"),
|
811 |
),
|
812 |
|
@@ -818,22 +1236,57 @@ def web_data():
|
|
818 |
Details(
|
819 |
Summary("Implementations from Dolma"),
|
820 |
D_code("""
|
|
|
|
|
|
|
|
|
|
|
821 |
""", block="block", language="python"),
|
822 |
),
|
823 |
Details(
|
824 |
Summary("Implementations from RedPajama-V2"),
|
825 |
D_code("""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
826 |
""", block="block", language="python"),
|
827 |
),
|
828 |
|
829 |
Details(
|
830 |
Summary("Implementations from DataTrove"),
|
831 |
D_code("""
|
|
|
|
|
|
|
|
|
832 |
""", block="block", language="python"),
|
833 |
),
|
834 |
Details(
|
835 |
Summary("TxT360 Implementation"),
|
836 |
D_code("""
|
|
|
|
|
|
|
|
|
|
|
837 |
""", block="block", language="python"),
|
838 |
),
|
839 |
|
|
|
612 |
but longer duplicate passages. To achieve this goal, we calculate over the document both the fraction of passages
|
613 |
that are duplicates, and the fraction of characters contained within those duplicated passages.
|
614 |
"""),
|
615 |
+
Details(
|
616 |
+
Summary("Implementations from Dolma"),
|
617 |
+
D_code("""
|
618 |
+
words = text.split()
|
619 |
+
word_count = len(words)
|
620 |
+
character_count = sum(len(word) for word in words)
|
621 |
+
...
|
622 |
+
lines = text.split("\n")
|
623 |
+
line_count = len(lines)
|
624 |
+
...
|
625 |
+
line_counts = Counter(lines)
|
626 |
+
attrs.fraction_of_duplicate_lines = sum(count for line, count in line_counts.items() if count > 1) / max(
|
627 |
+
line_count, 1
|
628 |
+
)
|
629 |
+
attrs.fraction_of_characters_in_duplicate_lines = sum(
|
630 |
+
len(line) * count for line, count in line_counts.items() if count > 1
|
631 |
+
) / max(character_count, 1)
|
632 |
+
""", block="block", language="python"),
|
633 |
+
),
|
634 |
+
Details(
|
635 |
+
Summary("Implementations from DataTrove"),
|
636 |
+
D_code("""
|
637 |
+
def find_duplicates(x: list[str]) -> tuple[int, int]:
|
638 |
+
unique_x = set()
|
639 |
+
duplicate_chars = 0
|
640 |
+
duplicate_elements = 0
|
641 |
+
for element in x:
|
642 |
+
if element in unique_x:
|
643 |
+
duplicate_chars += len(element)
|
644 |
+
duplicate_elements += 1
|
645 |
+
|
646 |
+
else:
|
647 |
+
unique_x.add(element)
|
648 |
+
return duplicate_elements, duplicate_chars
|
649 |
+
...
|
650 |
+
self.paragraph_exp = re.compile(r"\n{2,}")
|
651 |
+
self._line_splitter = re.compile("\n+")
|
652 |
+
...
|
653 |
+
paragraphs = self.paragraph_exp.split(text.strip())
|
654 |
+
paragraphs_duplicates, char_duplicates = find_duplicates(paragraphs)
|
655 |
+
if self.dup_para_frac and paragraphs_duplicates / len(paragraphs) > self.dup_para_frac:
|
656 |
+
return False, "dup_para_frac"
|
657 |
+
if self.dup_para_char_frac and char_duplicates / len(text) > self.dup_para_char_frac:
|
658 |
+
return False, "dup_para_char_frac"
|
659 |
+
|
660 |
+
lines = self._line_splitter.split(text)
|
661 |
+
line_duplicates, char_duplicates = find_duplicates(lines)
|
662 |
+
if self.dup_line_frac and line_duplicates / len(lines) > self.dup_line_frac:
|
663 |
+
return False, "dup_line_frac"
|
664 |
+
if self.dup_line_char_frac and char_duplicates / len(text) > self.dup_line_char_frac:
|
665 |
+
return False, "dup_line_char_frac"
|
666 |
+
""", block="block", language="python"),
|
667 |
+
),
|
668 |
P("""
|
669 |
After evaluating the implementations of Dolma and DataTrove (note: RedPajama V2 does not implement these two quality
|
670 |
signals), we have made the following decisions:
|
|
|
687 |
ensures consistency with the overall document character count calculation.
|
688 |
"""),
|
689 |
H5("Our Implementation"),
|
690 |
+
Details(
|
691 |
+
Summary("TxT360 Implementation"),
|
692 |
+
D_code("""
|
693 |
+
words = text.split()
|
694 |
+
word_count = len(words)
|
695 |
+
character_count = sum(len(word) for word in words)
|
696 |
+
...
|
697 |
+
lines = text.split("\n")
|
698 |
+
line_count = len(lines)
|
699 |
+
|
700 |
+
line_counts = Counter(lines)
|
701 |
+
attrs.fraction_of_duplicate_lines = (
|
702 |
+
sum((count - 1) for line, count in line_counts.items() if count > 1) / line_count
|
703 |
+
)
|
704 |
+
attrs.fraction_of_characters_in_duplicate_lines = (
|
705 |
+
sum(sum(len(w) for w in line.split()) * (count - 1) for line, count in
|
706 |
+
line_counts.items() if count > 1) / character_count
|
707 |
+
""", block="block", language="python"),
|
708 |
+
),
|
709 |
Details(
|
710 |
Summary("Sample documents filtered by excessive line repetitions / characters in repeated lines"),
|
711 |
DV(
|
|
|
719 |
Following Gopher [2], we remove documents with a high portion of n-grams. For each n ∈ (2, 3, 4), we calculate the
|
720 |
fraction of characters contained within the most frequently-occurring n-gram.
|
721 |
"""),
|
722 |
+
Details(
|
723 |
+
Summary("Implementations from Dolma"),
|
724 |
+
D_code("""
|
725 |
+
def all_ngram_counts(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
726 |
+
return [(n, Counter(list(zip(*[words[i:] for i in range(n)])))) for n in range(2, 11)]
|
727 |
+
...
|
728 |
+
all_counts = all_ngram_counts(words)
|
729 |
+
|
730 |
+
count_most_common_ngrams = (2, 3, 4)
|
731 |
+
for n, ngram_counts in all_counts:
|
732 |
+
if not ngram_counts:
|
733 |
+
continue
|
734 |
+
if n in count_most_common_ngrams:
|
735 |
+
most_common_ngram, count = ngram_counts.most_common(1)[0]
|
736 |
+
value = count * sum(len(w) for w in most_common_ngram) / max(character_count, 1)
|
737 |
+
attrs.fraction_of_characters_in_most_common_ngram.append((n, value))
|
738 |
+
""", block="block", language="python"),
|
739 |
+
),
|
740 |
+
Details(
|
741 |
+
Summary("Implementations from RedPajama-V2"),
|
742 |
+
D_code("""
|
743 |
+
class Base_RPS_Frac_Chars_In_Top_NGram(RPSBase): # noqa
|
744 |
+
## Base class for calculating the fraction of characters in the top N-gram. This operates on the lower-cased, punctation removed content.
|
745 |
+
NGRAM_SIZE: int = None
|
746 |
+
|
747 |
+
__slots__ = []
|
748 |
+
|
749 |
+
def __call__(self, document: Document) -> SignalType:
|
750 |
+
if self.NGRAM_SIZE is None:
|
751 |
+
raise NotImplementedError(
|
752 |
+
"NGRAM_SIZE must be set in the subclass"
|
753 |
+
)
|
754 |
+
|
755 |
+
# get the most common ngram
|
756 |
+
most_common_ngram = Counter(
|
757 |
+
# fetch the ngrams from the document if they exist, otherwise
|
758 |
+
# compute them
|
759 |
+
getattr(document, f"norm_self.NGRAM_SIZEgrams", None)
|
760 |
+
or
|
761 |
+
form_ngrams(iter(document.normalized_words), self.NGRAM_SIZE)
|
762 |
+
).most_common(1)
|
763 |
+
|
764 |
+
if len(most_common_ngram) == 0:
|
765 |
+
return [(0, len(document), 0.0)]
|
766 |
+
|
767 |
+
ngram, count = most_common_ngram[0]
|
768 |
+
|
769 |
+
if count <= 1:
|
770 |
+
return [(0, len(document), 0.0)]
|
771 |
+
|
772 |
+
total_chars = sum(len(w) for w in document.normalized_words)
|
773 |
+
score = sum(len(w) for w in ngram) * count / total_chars
|
774 |
+
score = round(score, PRECISION)
|
775 |
+
return [(0, len(document), score)]
|
776 |
+
""", block="block", language="python"),
|
777 |
+
),
|
778 |
+
|
779 |
+
Details(
|
780 |
+
Summary("Implementations from DataTrove"),
|
781 |
+
D_code("""
|
782 |
+
def get_n_grams(words: list[str], n: int) -> list[str]:
|
783 |
+
return [" ".join(words[i : i + n]) for i in range(len(words) - n + 1)]
|
784 |
+
|
785 |
+
def find_top_duplicate(x: list[str]) -> int:
|
786 |
+
counter = Counter()
|
787 |
+
for element in x:
|
788 |
+
counter[element] += 1
|
789 |
+
top_n_gram = counter.most_common(1)[0]
|
790 |
+
return len(top_n_gram[0]) * top_n_gram[1]
|
791 |
+
...
|
792 |
+
for n, n_frac in self.top_n_grams:
|
793 |
+
n_grams = get_n_grams(words, n)
|
794 |
+
if not n_grams:
|
795 |
+
continue
|
796 |
+
top_char_length = find_top_duplicate(n_grams)
|
797 |
+
if top_char_length / len(text) > n_frac:
|
798 |
+
return False, f"top_n_gram"
|
799 |
+
""", block="block", language="python"),
|
800 |
+
),
|
801 |
P("""
|
802 |
There are almost no contradictions between above implementations of fractions of characters in the most common
|
803 |
n-gram. The main process involves counting the occurrences of each n-gram and selecting the most common one. The
|
|
|
808 |
In practice, documents affected by this rule — where the most common n-gram exceeds a given threshold and occurs
|
809 |
only once — tend to be short.
|
810 |
"""),
|
811 |
+
Details(
|
812 |
+
Summary("TxT360 Implementation"),
|
813 |
+
D_code("""
|
814 |
+
def all_ngram_counts_new(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
815 |
+
return [(n, list(zip(*[words[i:] for i in range(n)]))) for n in range(2, 11)]
|
816 |
+
...
|
817 |
+
all_counts = all_ngram_counts_new(words)
|
818 |
+
count_most_common_ngrams = (2, 3, 4)
|
819 |
+
for n, ngram_counts in all_counts:
|
820 |
+
if not ngram_counts:
|
821 |
+
continue
|
822 |
+
if n in count_most_common_ngrams:
|
823 |
+
most_common_ngram, count = Counter(ngram_counts).most_common(1)[0]
|
824 |
+
value = count * sum(len(w) for w in most_common_ngram) / character_count
|
825 |
+
attrs.fraction_of_characters_in_most_common_ngram.append((n, value))
|
826 |
+
""", block="block", language="python"),
|
827 |
+
),
|
828 |
Details(
|
829 |
Summary("Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)"),
|
830 |
DV(
|
|
|
839 |
fraction of characters contained within all duplicate n-grams, taking care not to count characters that occur in
|
840 |
overlapping n-grams more than once.
|
841 |
"""),
|
842 |
+
Details(
|
843 |
+
Summary("Implementations from Dolma"),
|
844 |
+
D_code("""
|
845 |
+
def all_ngram_counts(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
846 |
+
return [(n, Counter(list(zip(*[words[i:] for i in range(n)])))) for n in range(2, 11)]
|
847 |
+
...
|
848 |
+
all_counts = all_ngram_counts(words)
|
849 |
+
for n, ngram_counts in all_counts:
|
850 |
+
if not ngram_counts:
|
851 |
+
continue
|
852 |
+
if n in count_most_common_ngrams:
|
853 |
+
...
|
854 |
+
else:
|
855 |
+
ng_char_count = sum(count * sum(len(w) for w in ng) for ng, count in ngram_counts.items())
|
856 |
+
value = sum(
|
857 |
+
count * sum(len(w) for w in ng) for ng, count in ngram_counts.items() if count > 1
|
858 |
+
) / max(ng_char_count, 1)
|
859 |
+
attrs.fraction_of_characters_in_duplicate_ngrams.append((n, value))
|
860 |
+
""", block="block", language="python"),
|
861 |
+
),
|
862 |
+
Details(
|
863 |
+
Summary("Implementations from RedPajama-V2"),
|
864 |
+
D_code("""
|
865 |
+
class Base_RPS_Frac_Chars_In_Dupe_NGrams(RPSBase): # noqa
|
866 |
+
## Base class for calculating the fraction of characters in duplicate word N-grams. This operates on the lower-cased, punctation removed content. The function also ensures that characters in overlapping ngrams are only counted once.
|
867 |
+
NGRAM_SIZE: int = None
|
868 |
+
__slots__ = []
|
869 |
+
|
870 |
+
def __call__(self, document: Document) -> SignalType:
|
871 |
+
if self.NGRAM_SIZE is None:
|
872 |
+
raise NotImplementedError(
|
873 |
+
"NGRAM_SIZE must be set in the subclass"
|
874 |
+
)
|
875 |
+
|
876 |
+
if len(document.normalized_words) < self.NGRAM_SIZE:
|
877 |
+
return [(0, len(document), 0.0)]
|
878 |
+
|
879 |
+
# fetch the ngrams from the document if they exist, otherwise
|
880 |
+
# compute them
|
881 |
+
doc_n_grams = (
|
882 |
+
getattr(document, f"norm_self.NGRAM_SIZEgrams", None)
|
883 |
+
or
|
884 |
+
tuple(form_ngrams(
|
885 |
+
iter(document.normalized_words), self.NGRAM_SIZE
|
886 |
+
))
|
887 |
+
)
|
888 |
+
|
889 |
+
# keep only ngrams which occur at least twice
|
890 |
+
ngram_dupes =
|
891 |
+
ngram for ngram, count in Counter(doc_n_grams).items() if count > 1
|
892 |
+
|
893 |
+
|
894 |
+
duplicated_grams = np.zeros(len(document.normalized_words), dtype=int)
|
895 |
+
|
896 |
+
i = 0
|
897 |
+
for ngram in doc_n_grams:
|
898 |
+
if ngram in ngram_dupes:
|
899 |
+
duplicated_grams[i: i + self.NGRAM_SIZE] = 1
|
900 |
+
|
901 |
+
i += 1
|
902 |
+
|
903 |
+
word_lengths = np.array(list(map(len, document.normalized_words)))
|
904 |
+
chars_duped = np.sum(word_lengths * duplicated_grams)
|
905 |
+
total_chars = np.sum(word_lengths)
|
906 |
+
|
907 |
+
if total_chars == 0:
|
908 |
+
return [(0, len(document), 0.0)]
|
909 |
+
|
910 |
+
score = float(chars_duped / total_chars)
|
911 |
+
score = round(score, PRECISION)
|
912 |
+
return [(0, len(document), score)]
|
913 |
+
""", block="block", language="python"),
|
914 |
+
),
|
915 |
+
|
916 |
+
Details(
|
917 |
+
Summary("Implementations from DataTrove"),
|
918 |
+
D_code("""
|
919 |
+
def find_all_duplicate(words: list[str], n: int) -> int:
|
920 |
+
n_words = len(words)
|
921 |
+
unique = set()
|
922 |
+
repeated_chars, idx = 0, 0
|
923 |
+
while idx < n_words - n + 1:
|
924 |
+
n_gram = "".join(words[idx : idx + n])
|
925 |
+
if n_gram in unique:
|
926 |
+
repeated_chars += len(n_gram)
|
927 |
+
idx += n
|
928 |
+
else:
|
929 |
+
unique.add(n_gram)
|
930 |
+
idx += 1
|
931 |
+
assert repeated_chars <= len("".join(words))
|
932 |
+
return repeated_chars
|
933 |
+
...
|
934 |
+
for n, n_frac in self.dup_n_grams:
|
935 |
+
n_duplicates_char = find_all_duplicate(words, n)
|
936 |
+
if n_duplicates_char / len(text) > n_frac:
|
937 |
+
return False, f"duplicated_n_grams"
|
938 |
+
""", block="block", language="python"),
|
939 |
+
),
|
940 |
P("""
|
941 |
For the computation of fraction of characters in duplicate n-gram, Dolma uses the number of characters in all
|
942 |
n-grams (with overlapping) as the denominator, and uses the number of characters in all duplicated n-grams
|
943 |
+
(with overlapping) as the numerator."""),
|
944 |
+
P("""RedPajama V2 uses the number of all characters in (the words of) the document
|
945 |
(without overlapping) as the denominator, and uses the number of characters that are recognized as part of the
|
946 |
+
duplicate n-gram as the numerator."""),
|
947 |
+
P("""Datatrove uses the number of all characters in the document (including white
|
948 |
spaces, without overlapping) as the denominator, and uses the number of characters that are recognized as
|
949 |
duplicate n-gram as the numerator. However, there is a mismatch in DataTrove’s calculation, as the number of
|
950 |
characters in the duplicated n-grams excludes white spaces, while the total character count of the document
|
951 |
+
does not."""),
|
952 |
+
|
953 |
+
P("""We decided to use the RedPajama V2 implementation but skip the 1st occurrence of the duplicate n-gram.
|
954 |
"""),
|
955 |
+
Details(
|
956 |
+
Summary("TxT360 Implementation")
|
957 |
+
D_code("""
|
958 |
+
def get_dup_ngram_frac(n, doc_n_grams, text):
|
959 |
+
# fetch the ngrams from the document if they exist, otherwise compute them
|
960 |
+
# doc_n_grams = list(zip(*[words[i:] for i in range(n)]))
|
961 |
+
|
962 |
+
duplicated_grams = np.zeros(len(text.split()), dtype=int)
|
963 |
+
|
964 |
+
unique_ngrams = set()
|
965 |
+
|
966 |
+
for i, ngram in enumerate(doc_n_grams):
|
967 |
+
if ngram in unique_ngrams:
|
968 |
+
duplicated_grams[i: i + n] = 1
|
969 |
+
else:
|
970 |
+
unique_ngrams.add(ngram)
|
971 |
+
|
972 |
+
word_lengths = np.array(list(map(len, text.split())))
|
973 |
+
chars_duped = np.sum(word_lengths * duplicated_grams)
|
974 |
+
total_chars = np.sum(word_lengths)
|
975 |
+
|
976 |
+
return float(chars_duped / total_chars)
|
977 |
+
|
978 |
+
def all_ngram_counts_new(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
979 |
+
return [(n, list(zip(*[words[i:] for i in range(n)]))) for n in range(2, 11)]
|
980 |
+
...
|
981 |
+
all_counts = all_ngram_counts_new(words)
|
982 |
+
count_most_common_ngrams = (2, 3, 4)
|
983 |
+
for n, ngram_counts in all_counts:
|
984 |
+
if not ngram_counts:
|
985 |
+
continue
|
986 |
+
if n in count_most_common_ngrams:
|
987 |
+
...
|
988 |
+
else:
|
989 |
+
score = get_dup_ngram_frac(n, ngram_counts, text)
|
990 |
+
attrs.fraction_of_characters_in_duplicate_ngrams.append((n, score))
|
991 |
+
""", block="block", language="python"),
|
992 |
+
),
|
993 |
+
Details(
|
994 |
+
Summary("An example to show the difference between above implementations"),
|
995 |
+
P("""
|
996 |
+
Considering n = 5 and the sample sentence:
|
997 |
+
|
998 |
+
"word_a word_b word_c word_d word_e word_f word_g word_a word_b word_c word_d word_e word_f word_g word_a word_b word_c"
|
999 |
+
|
1000 |
+
In Dolma's implementation, there are 13 5-grams in total with 6 duplicated 5-grams. The resulting fraction of characters in duplicate 5-gram is 6/13.
|
1001 |
+
In RedPajama's V2 implementation, there are 17*6 characters in total and 14*6 characters that are contained in duplicate 5-grams. The fraction is 14/17.
|
1002 |
+
In DataTrove's implementation, there are 17*6 + 16(white spaces) characters in total and 10 duplicated 5-grams after excluding the first occurrence. The resulting fraction number is 10*6/(17*6+16).
|
1003 |
+
|
1004 |
+
In our implementation, there are 17*6 characters in total with 10*6 characters that are duplicated after excluding the first occurence. This results in a fraction of 10/17.
|
1005 |
+
"""),
|
1006 |
+
),
|
1007 |
+
H4("
|
1008 |
H5(
|
1009 |
"Sample Documents Filtered by the Fraction of Characters in Duplicated N-grams (n=5,...,10)"
|
1010 |
),
|
|
|
1023 |
works ([2], [3], [6]), we remove the documents if more than 30% of the lines end with an ellipsis or more than
|
1024 |
90% of lines start with a bullet point.
|
1025 |
"""),
|
1026 |
+
Details(
|
1027 |
+
Summary("Ellipsis Symbol Identification Implemetations"),
|
1028 |
+
P("Dolma: "),
|
1029 |
+
D_code("""
|
1030 |
+
ELLIPSIS_SYMBOLS = ("…")
|
1031 |
+
""", block="block", language="python"),
|
1032 |
+
P("RedPajamaV2: "),
|
1033 |
+
D_code("""
|
1034 |
+
ELLIPSIS_SYMBOLS = ("...", "…")
|
1035 |
+
""", block="block", language="python"),
|
1036 |
+
P("DataTrove: "),
|
1037 |
+
D_code("""
|
1038 |
+
ELLIPSIS_SYMBOLS = ("...", "…")
|
1039 |
+
""", block="block", language="python"),
|
1040 |
+
P("TxT360: "),
|
1041 |
+
D_code("""
|
1042 |
+
ELLIPSIS_SYMBOLS = ("...", "…", "[...]", "[…]")
|
1043 |
+
""", block="block", language="python"),
|
1044 |
+
),
|
1045 |
+
Details(
|
1046 |
+
Summary("Bullet Point Identification Implemetations"),
|
1047 |
+
P("Dolma: ")
|
1048 |
+
D_code("""
|
1049 |
+
BULLET_POINTS = ("*", "-"
|
1050 |
+
""", block="block", language="python"),
|
1051 |
+
P("RedPajamaV2: ")
|
1052 |
+
D_code("""
|
1053 |
+
BULLET_POINT_SYMBOLS = (
|
1054 |
+
"•", # bullet point
|
1055 |
+
"‣", # triangular bullet point
|
1056 |
+
"â–¶", # black right pointing triangle
|
1057 |
+
"â—€", # black left pointing triangle
|
1058 |
+
"â—¦", # white bullet point
|
1059 |
+
"â– ", # black square
|
1060 |
+
"â–¡", # white square
|
1061 |
+
"â–ª", # black small square
|
1062 |
+
"â–«", # white small square
|
1063 |
+
"–", # en dash
|
1064 |
+
)
|
1065 |
+
""", block="block", language="python"),
|
1066 |
+
P("DataTrove: "),
|
1067 |
+
D_code("""
|
1068 |
+
BULLET_POINT_SYMBOLS = ("•" , "-")
|
1069 |
+
""", block="block", language="python"),
|
1070 |
+
P("TxT360: "),
|
1071 |
+
D_code("""
|
1072 |
+
BULLET_POINT_SYMBOLS = (
|
1073 |
+
"•", # • bullet point
|
1074 |
+
"‣", # ‣ triangular bullet point
|
1075 |
+
"â–¶", # â–¶ black right pointing triangle
|
1076 |
+
"â—€", # â—€ black left pointing triangle
|
1077 |
+
"â—¦", # â—¦ white bullet point
|
1078 |
+
"â– ", # â– black square
|
1079 |
+
"â–¡", # â–¡ white square
|
1080 |
+
"â–ª", # â–ª black small square
|
1081 |
+
"â–«", # â–« white small square
|
1082 |
+
"-", # - en dash
|
1083 |
+
"–", # – dash
|
1084 |
+
"—", # — zh dash
|
1085 |
+
"*", # * star
|
1086 |
+
)
|
1087 |
+
""", block="block", language="python"),
|
1088 |
+
),
|
1089 |
+
|
1090 |
+
|
1091 |
Details(
|
1092 |
Summary("Sample documents that are filtered out by line-wise heuristics"),
|
1093 |
DV(
|
|
|
1096 |
"Sample documents that are filtered out by line-wise heuristics",
|
1097 |
),
|
1098 |
),
|
1099 |
+
|
1100 |
H4("3.3 Statistics-based Heuristics"),
|
1101 |
P("We summarize other statistics-based rules originated from Gopher [7] in this section. The statistics can be used include:"),
|
1102 |
Ul(
|
|
|
1120 |
Details(
|
1121 |
Summary("Implementations from Dolma"),
|
1122 |
D_code("""
|
1123 |
+
words = text.split()
|
1124 |
+
word_count = len(words)
|
1125 |
""", block="block", language="python"),
|
1126 |
),
|
1127 |
Details(
|
1128 |
Summary("Implementations from RedPajama-V2"),
|
1129 |
D_code("""
|
1130 |
+
# the normalized content: lowercased and punctuation removed
|
1131 |
+
self._normalized_content = normalize(content)
|
1132 |
+
self._normalized_words = tuple(self._normalized_content.split())
|
1133 |
+
self._num_normalized_words = len(self._normalized_words)
|
1134 |
+
|
1135 |
+
...
|
1136 |
+
def normalize(
|
1137 |
+
text: str,
|
1138 |
+
remove_punct: bool = True,
|
1139 |
+
lowercase: bool = True,
|
1140 |
+
nfd_unicode: bool = True,
|
1141 |
+
white_space: bool = True
|
1142 |
+
) -> str:
|
1143 |
+
#Normalize the text by lowercasing and removing punctuation.
|
1144 |
+
# remove punctuation
|
1145 |
+
if remove_punct:
|
1146 |
+
text = text.translate(TRANSLATION_TABLE_PUNCTUATION)
|
1147 |
+
# lowercase
|
1148 |
+
if lowercase:
|
1149 |
+
text = text.lower()
|
1150 |
+
if white_space:
|
1151 |
+
text = text.strip()
|
1152 |
+
text = re.sub(r"\s+", " ", text)
|
1153 |
+
# NFD unicode normalization
|
1154 |
+
if nfd_unicode:
|
1155 |
+
text = unicodedata.normalize("NFD", text)
|
1156 |
+
return text
|
1157 |
""", block="block", language="python"),
|
1158 |
),
|
1159 |
|
1160 |
Details(
|
1161 |
Summary("Implementations from DataTrove"),
|
1162 |
D_code("""
|
1163 |
+
words = self.tokenizer.word_tokenize(text)
|
1164 |
+
n_words = len(words)
|
1165 |
+
|
1166 |
+
non_symbol_words = [w for w in words if any(ch not in PUNCTUATION_SET for ch in w)]
|
1167 |
+
n_non_symbol_words_words = len(non_symbol_words)
|
1168 |
""", block="block", language="python"),
|
1169 |
),
|
1170 |
P("""
|
|
|
1199 |
Details(
|
1200 |
Summary("Implementations from RedPajama-V2"),
|
1201 |
D_code("""
|
1202 |
+
class RPS_Doc_Num_Sentences(RPSBase): # noqa
|
1203 |
+
##The number of sentences in the content. This is calculated using the regex r'[^.!?]+[.!?]*'
|
1204 |
+
SENT_PATTERN = re.compile(r'[^.!?]+[.!?]*', flags=re.UNICODE)
|
1205 |
+
|
1206 |
+
__slots__ = ()
|
1207 |
+
|
1208 |
+
def __call__(self, document: Document) -> SignalType:
|
1209 |
+
##count the number of sentences in the content using regex
|
1210 |
+
score = float(len(self.SENT_PATTERN.findall(document.raw_content)))
|
1211 |
+
return [(0, len(document), score)]
|
1212 |
""", block="block", language="python"),
|
1213 |
),
|
1214 |
P("""
|
|
|
1218 |
Details(
|
1219 |
Summary("TxT360 Implementation"),
|
1220 |
D_code("""
|
1221 |
+
from nltk.tokenize import sent_tokenize
|
1222 |
+
...
|
1223 |
+
def count_sentences(text):
|
1224 |
+
sentences = sent_tokenize(text)
|
1225 |
+
return len(sentences)
|
1226 |
+
...
|
1227 |
+
attrs.num_of_sentences = count_sentences(text)
|
1228 |
""", block="block", language="python"),
|
1229 |
),
|
1230 |
|
|
|
1236 |
Details(
|
1237 |
Summary("Implementations from Dolma"),
|
1238 |
D_code("""
|
1239 |
+
SYMBOLS = ("#", "…")
|
1240 |
+
...
|
1241 |
+
attrs.symbol_to_word_ratio = sum(1 for word in words if any(s in word for s in SYMBOLS)) / max(
|
1242 |
+
word_count, 1
|
1243 |
+
)
|
1244 |
""", block="block", language="python"),
|
1245 |
),
|
1246 |
Details(
|
1247 |
Summary("Implementations from RedPajama-V2"),
|
1248 |
D_code("""
|
1249 |
+
class RPS_Doc_Symbol_To_Word_Ratio(RPSBase): # noqa
|
1250 |
+
##The ratio of symbols to words in the content. This is analogous to
|
1251 |
+
##the signal used in Gopher. Symbols are defined "#", "...", and "…".
|
1252 |
+
SYMBOLS = ("#", "...", "…")
|
1253 |
+
|
1254 |
+
__slots__ = ()
|
1255 |
+
|
1256 |
+
def __call__(self, document: Document) -> SignalType:
|
1257 |
+
num_words = document.num_raw_words
|
1258 |
+
|
1259 |
+
if num_words == 0:
|
1260 |
+
return [(0, len(document), None)]
|
1261 |
+
|
1262 |
+
# count the number of symbols in the content
|
1263 |
+
num_symbols = float(sum(
|
1264 |
+
document.raw_content.count(x) for x in self.SYMBOLS
|
1265 |
+
))
|
1266 |
+
|
1267 |
+
score = num_symbols / num_words
|
1268 |
+
score = round(score, PRECISION)
|
1269 |
+
return [(0, len(document), score)]
|
1270 |
""", block="block", language="python"),
|
1271 |
),
|
1272 |
|
1273 |
Details(
|
1274 |
Summary("Implementations from DataTrove"),
|
1275 |
D_code("""
|
1276 |
+
if self.max_symbol_word_ratio and text.count("#") / n_words > self.max_symbol_word_ratio:
|
1277 |
+
return False, "gopher_too_many_hashes"
|
1278 |
+
if self.max_symbol_word_ratio and (text.count("...") + text.count("…")) / n_words > self.max_symbol_word_ratio:
|
1279 |
+
return False, "gopher_too_many_ellipsis"
|
1280 |
""", block="block", language="python"),
|
1281 |
),
|
1282 |
Details(
|
1283 |
Summary("TxT360 Implementation"),
|
1284 |
D_code("""
|
1285 |
+
SYMBOLS = ("#", "...", "…")
|
1286 |
+
...
|
1287 |
+
symbol_pattern = re.compile("|".join(re.escape(symbol) for symbol in SYMBOLS))
|
1288 |
+
...
|
1289 |
+
attrs.symbol_to_word_ratio = sum(1 for word in words if symbol_pattern.search(word)) / word_count
|
1290 |
""", block="block", language="python"),
|
1291 |
),
|
1292 |
|