hunterhector
commited on
Commit
•
a4dc57a
1
Parent(s):
e74bc72
add fiture to early sections too
Browse files- eval_result_figures.py +67 -0
- main.py +7 -4
- results.py +1 -64
eval_result_figures.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from plotly import graph_objects as go
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
## Evaluation Graphs
|
6 |
+
|
7 |
+
# Load the data
|
8 |
+
all_eval_results = {}
|
9 |
+
for fname in os.listdir("data/txt360_eval"):
|
10 |
+
if fname.endswith(".csv"):
|
11 |
+
metric_name = fname.replace("CKPT Eval - ", "").replace(".csv", "")
|
12 |
+
all_eval_results[metric_name] = {}
|
13 |
+
|
14 |
+
# with open(os.path.join("data/txt360_eval", fname)) as f:
|
15 |
+
df = pd.read_csv(os.path.join("data/txt360_eval", fname))
|
16 |
+
|
17 |
+
# slimpajama_res = df.iloc[2:, 2].astype(float).fillna(0.0) # slimpajama
|
18 |
+
fineweb_res = df.iloc[2:, 1].astype(float).fillna(method="bfill") # fineweb
|
19 |
+
txt360_base = df.iloc[2:, 2].astype(float).fillna(method="bfill") # txt360-dedup-only
|
20 |
+
txt360_web_up = df.iloc[2:, 3].astype(float).fillna(method="bfill") # txt360-web-only-upsampled
|
21 |
+
txt360_all_up_stack = df.iloc[2:, 4].astype(float).fillna(method="bfill") # txt360-all-upsampled + stackv2
|
22 |
+
|
23 |
+
# each row is 20B tokens.
|
24 |
+
# all_eval_results[metric_name]["slimpajama"] = slimpajama_res
|
25 |
+
all_eval_results[metric_name]["fineweb"] = fineweb_res
|
26 |
+
all_eval_results[metric_name]["txt360-dedup-only"] = txt360_base
|
27 |
+
all_eval_results[metric_name]["txt360-web-only-upsampled"] = txt360_web_up
|
28 |
+
all_eval_results[metric_name]["txt360-all-upsampled + stackv2"] = txt360_all_up_stack
|
29 |
+
all_eval_results[metric_name]["token"] = [20 * i for i in range(len(fineweb_res))]
|
30 |
+
|
31 |
+
|
32 |
+
# Eval Result Plots
|
33 |
+
all_eval_res_figs = {}
|
34 |
+
for metric_name, res in all_eval_results.items():
|
35 |
+
fig_res = go.Figure()
|
36 |
+
|
37 |
+
# Add lines
|
38 |
+
fig_res.add_trace(go.Scatter(
|
39 |
+
x=all_eval_results[metric_name]["token"],
|
40 |
+
y=all_eval_results[metric_name]["fineweb"],
|
41 |
+
mode='lines', name='FineWeb'
|
42 |
+
))
|
43 |
+
fig_res.add_trace(go.Scatter(
|
44 |
+
x=all_eval_results[metric_name]["token"],
|
45 |
+
y=all_eval_results[metric_name]["txt360-web-only-upsampled"],
|
46 |
+
mode='lines', name='TxT360 - CC Data Upsampled'
|
47 |
+
))
|
48 |
+
fig_res.add_trace(go.Scatter(
|
49 |
+
x=all_eval_results[metric_name]["token"],
|
50 |
+
y=all_eval_results[metric_name]["txt360-dedup-only"],
|
51 |
+
mode='lines', name='TxT360 - CC Data Dedup'
|
52 |
+
))
|
53 |
+
fig_res.add_trace(go.Scatter(
|
54 |
+
x=all_eval_results[metric_name]["token"],
|
55 |
+
y=all_eval_results[metric_name]["txt360-all-upsampled + stackv2"],
|
56 |
+
mode='lines', name='TxT360 - Full Upsampled + Stack V2'
|
57 |
+
))
|
58 |
+
|
59 |
+
# Update layout
|
60 |
+
fig_res.update_layout(
|
61 |
+
title=f"{metric_name} Performance",
|
62 |
+
title_x=0.5, # Centers the title
|
63 |
+
xaxis_title="Billion Tokens",
|
64 |
+
yaxis_title=metric_name,
|
65 |
+
legend_title="Dataset",
|
66 |
+
)
|
67 |
+
all_eval_res_figs[metric_name] = fig_res
|
main.py
CHANGED
@@ -23,6 +23,8 @@ import results
|
|
23 |
from pybtex.database import parse_file
|
24 |
import data_viewer
|
25 |
|
|
|
|
|
26 |
|
27 |
app, rt = fast_app(
|
28 |
debug=True,
|
@@ -200,7 +202,7 @@ def main():
|
|
200 |
),
|
201 |
Li(
|
202 |
A(
|
203 |
-
"
|
204 |
href="#section12",
|
205 |
)
|
206 |
),
|
@@ -296,7 +298,7 @@ def main():
|
|
296 |
),
|
297 |
Li(
|
298 |
A(
|
299 |
-
"
|
300 |
href="#section42",
|
301 |
)
|
302 |
),
|
@@ -354,7 +356,7 @@ def main():
|
|
354 |
),
|
355 |
Li(
|
356 |
A(
|
357 |
-
"
|
358 |
href="#section52",
|
359 |
)
|
360 |
),
|
@@ -852,9 +854,10 @@ def intro():
|
|
852 |
Section(
|
853 |
H2("About TxT360"),
|
854 |
P( "TL;DR ",
|
855 |
-
B("We introduce TxT360 (Trillion eXtracted Text), the first dataset to globally deduplicate 99 CommonCrawl snapshots and 14 high-quality data sources from diverse domains (e.g., FreeLaw, PG-19, etc.). The large-scale deduplication process and rich metadata stored enables precise control over data distribution.
|
856 |
)
|
857 |
),
|
|
|
858 |
P(
|
859 |
"Building on top of the prior studies on pre-training data",
|
860 |
D_cite(bibtex_key="refinedweb"),
|
|
|
23 |
from pybtex.database import parse_file
|
24 |
import data_viewer
|
25 |
|
26 |
+
from eval_result_figures import all_eval_res_figs
|
27 |
+
|
28 |
|
29 |
app, rt = fast_app(
|
30 |
debug=True,
|
|
|
202 |
),
|
203 |
Li(
|
204 |
A(
|
205 |
+
"Why TxT360",
|
206 |
href="#section12",
|
207 |
)
|
208 |
),
|
|
|
298 |
),
|
299 |
Li(
|
300 |
A(
|
301 |
+
"Why Global Deduplication",
|
302 |
href="#section42",
|
303 |
)
|
304 |
),
|
|
|
356 |
),
|
357 |
Li(
|
358 |
A(
|
359 |
+
"A Simple Data Mix Creates a Good Learning Curve",
|
360 |
href="#section52",
|
361 |
)
|
362 |
),
|
|
|
854 |
Section(
|
855 |
H2("About TxT360"),
|
856 |
P( "TL;DR ",
|
857 |
+
B("We introduce TxT360 (Trillion eXtracted Text), the first dataset to globally deduplicate 99 CommonCrawl snapshots and 14 high-quality data sources from diverse domains (e.g., FreeLaw, PG-19, etc.). The large-scale deduplication process and rich metadata stored enables precise control over data distribution. We demonstrate a simple but effective upsampling recipe that creates a 15+ trillion-token corpus, outperforming FineWeb 15T on several key metrics. With the information, TxT360 empowers pre-trainers to explore more advanced weighting techniques, a feature not commonly available in previous pre-training datasets. In line with our 360° open source spirit, we document all detailed steps, reasons of our decisions, detailed statistics and more, in additional to the dataset itself. We hope this can serve as a useful resource for future developers."
|
858 |
)
|
859 |
),
|
860 |
+
plotly2fasthtml(all_eval_res_figs["MMLU"]),
|
861 |
P(
|
862 |
"Building on top of the prior studies on pre-training data",
|
863 |
D_cite(bibtex_key="refinedweb"),
|
results.py
CHANGED
@@ -11,70 +11,7 @@ from plotly import graph_objects as go
|
|
11 |
import pandas as pd
|
12 |
import plotly.express as px
|
13 |
|
14 |
-
|
15 |
-
## Evaluation Graphs
|
16 |
-
|
17 |
-
# Load the data
|
18 |
-
all_eval_results = {}
|
19 |
-
for fname in os.listdir("data/txt360_eval"):
|
20 |
-
if fname.endswith(".csv"):
|
21 |
-
metric_name = fname.replace("CKPT Eval - ", "").replace(".csv", "")
|
22 |
-
all_eval_results[metric_name] = {}
|
23 |
-
|
24 |
-
# with open(os.path.join("data/txt360_eval", fname)) as f:
|
25 |
-
df = pd.read_csv(os.path.join("data/txt360_eval", fname))
|
26 |
-
|
27 |
-
# slimpajama_res = df.iloc[2:, 2].astype(float).fillna(0.0) # slimpajama
|
28 |
-
fineweb_res = df.iloc[2:, 1].astype(float).fillna(method="bfill") # fineweb
|
29 |
-
txt360_base = df.iloc[2:, 2].astype(float).fillna(method="bfill") # txt360-dedup-only
|
30 |
-
txt360_web_up = df.iloc[2:, 3].astype(float).fillna(method="bfill") # txt360-web-only-upsampled
|
31 |
-
txt360_all_up_stack = df.iloc[2:, 4].astype(float).fillna(method="bfill") # txt360-all-upsampled + stackv2
|
32 |
-
|
33 |
-
# each row is 20B tokens.
|
34 |
-
# all_eval_results[metric_name]["slimpajama"] = slimpajama_res
|
35 |
-
all_eval_results[metric_name]["fineweb"] = fineweb_res
|
36 |
-
all_eval_results[metric_name]["txt360-dedup-only"] = txt360_base
|
37 |
-
all_eval_results[metric_name]["txt360-web-only-upsampled"] = txt360_web_up
|
38 |
-
all_eval_results[metric_name]["txt360-all-upsampled + stackv2"] = txt360_all_up_stack
|
39 |
-
all_eval_results[metric_name]["token"] = [20 * i for i in range(len(fineweb_res))]
|
40 |
-
|
41 |
-
|
42 |
-
# Eval Result Plots
|
43 |
-
all_eval_res_figs = {}
|
44 |
-
for metric_name, res in all_eval_results.items():
|
45 |
-
fig_res = go.Figure()
|
46 |
-
|
47 |
-
# Add lines
|
48 |
-
fig_res.add_trace(go.Scatter(
|
49 |
-
x=all_eval_results[metric_name]["token"],
|
50 |
-
y=all_eval_results[metric_name]["fineweb"],
|
51 |
-
mode='lines', name='FineWeb'
|
52 |
-
))
|
53 |
-
fig_res.add_trace(go.Scatter(
|
54 |
-
x=all_eval_results[metric_name]["token"],
|
55 |
-
y=all_eval_results[metric_name]["txt360-web-only-upsampled"],
|
56 |
-
mode='lines', name='TxT360 - CC Data Upsampled'
|
57 |
-
))
|
58 |
-
fig_res.add_trace(go.Scatter(
|
59 |
-
x=all_eval_results[metric_name]["token"],
|
60 |
-
y=all_eval_results[metric_name]["txt360-dedup-only"],
|
61 |
-
mode='lines', name='TxT360 - CC Data Dedup'
|
62 |
-
))
|
63 |
-
fig_res.add_trace(go.Scatter(
|
64 |
-
x=all_eval_results[metric_name]["token"],
|
65 |
-
y=all_eval_results[metric_name]["txt360-all-upsampled + stackv2"],
|
66 |
-
mode='lines', name='TxT360 - Full Upsampled + Stack V2'
|
67 |
-
))
|
68 |
-
|
69 |
-
# Update layout
|
70 |
-
fig_res.update_layout(
|
71 |
-
title=f"{metric_name} Performance",
|
72 |
-
title_x=0.5, # Centers the title
|
73 |
-
xaxis_title="Billion Tokens",
|
74 |
-
yaxis_title=metric_name,
|
75 |
-
legend_title="Dataset",
|
76 |
-
)
|
77 |
-
all_eval_res_figs[metric_name] = fig_res
|
78 |
|
79 |
##upsampling validation loss graph
|
80 |
|
|
|
11 |
import pandas as pd
|
12 |
import plotly.express as px
|
13 |
|
14 |
+
from eval_result_figures import all_eval_res_figs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
##upsampling validation loss graph
|
17 |
|