|
from fasthtml.common import * |
|
from fasthtml.components import * |
|
from fasthtml.components import D_title, D_article, D_front_matter, D_contents, D_byline |
|
from plotly import graph_objects as go |
|
from fh_plotly import plotly2fasthtml |
|
import pandas as pd |
|
import json |
|
from rich import print |
|
import overview |
|
import curated |
|
import web |
|
import common |
|
import results |
|
|
|
|
|
app, rt = fast_app( |
|
debug=True, |
|
pico=False, |
|
hdrs=( |
|
Meta(charset="UTF-8"), |
|
Meta(name="viewport", content="width=device-width, initial-scale=1.0"), |
|
Script(src="https://distill.pub/template.v2.js"), |
|
Script(src="https://unpkg.com/htmx.org@next/dist/htmx.min.js"), |
|
Script(src="https://cdn.plot.ly/plotly-latest.min.js"), |
|
Link(rel="stylesheet", href="style.css"), |
|
MarkdownJS(), |
|
), |
|
) |
|
|
|
|
|
@app.get("/") |
|
def main(): |
|
return Div( |
|
D_front_matter(), |
|
D_title( |
|
H1( |
|
"TxT360: the most comprehensive, highest quality, and production ready pretraining dataset", |
|
cls="l-body", |
|
style="text-align: center;", |
|
), |
|
Div( |
|
Img(src="images/llm360_logo.png"), |
|
id="title-plot", |
|
cls="main-plot-container l-page", |
|
), |
|
), |
|
D_article( |
|
D_contents( |
|
Nav( |
|
H3("Table of Contents"), |
|
Div( |
|
A("TxT360", href="#_self"), |
|
hx_get="/intro", |
|
hx_target="#inner-text", |
|
), |
|
Div( |
|
Ul( |
|
Li( |
|
A( |
|
"About TxT360", |
|
href="/intro#section1", |
|
hx_get="/intro#section1", |
|
hx_target="#inner-text", |
|
) |
|
), |
|
Li( |
|
A( |
|
"Globally Deduplicated", |
|
href="/intro#section2", |
|
hx_get="/intro#section2", |
|
hx_target="#inner-text", |
|
) |
|
), |
|
Li( |
|
A( |
|
"Controllable Upweighting", |
|
href="/intro#section3", |
|
hx_get="/intro#section3", |
|
hx_target="#inner-text", |
|
) |
|
), |
|
Li( |
|
A( |
|
"Fully Documented", |
|
href="/intro#section4", |
|
hx_get="/intro#section4", |
|
hx_target="#inner-text", |
|
) |
|
), |
|
), |
|
), |
|
Div( |
|
A("Overview", href="#inner-text"), |
|
hx_get="/overview", |
|
hx_target="#inner-text", |
|
), |
|
Div( |
|
A("Web Data", href="#inner-text"), |
|
hx_get="/webdata", |
|
hx_target="#inner-text", |
|
), |
|
Div( |
|
A("Curated Sources", href="#inner-text"), |
|
hx_get="/curated", |
|
hx_target="#inner-text", |
|
), |
|
Div( |
|
A("Global Processing Steps", href="#inner-text"), |
|
hx_get="/common", |
|
hx_target="#inner-text", |
|
), |
|
Div( |
|
A("TxT360 Results", href="#inner-text"), |
|
hx_get="/results", |
|
hx_target="#inner-text", |
|
), |
|
role="navigation", |
|
cls="l-text figcaption", |
|
), |
|
), |
|
intro(), |
|
), |
|
) |
|
|
|
intro_text = P("Pretraining performant large language models (LLMs) requires trillions of tokens of high quality data. Many prior work, including our previous pretraining projects ", |
|
A("Amber-7B", href = "https://huggingface.co/LLM360/Amber"), |
|
", ", |
|
A("Crystal-7B", href = "https://huggingface.co/LLM360/CrystalCoder"), |
|
", ", |
|
A("K2-65B", href = "https://huggingface.co/LLM360/K2"), |
|
" have demonstrated how data curation is a ‘make-or-break’ decision for model quality and capability.",) |
|
|
|
intro_list = P("We present TxT360, the Trillion eXtracted Text corpus, a 5.7T token dataset for pretraining projects that:") |
|
|
|
intro_list1 = Ol( |
|
Li("Curates commonly used pretraining datasets, including all CommonCrawl", style = "margin-bottom: 5px"), |
|
Li("Employs carefully selected filters designed for each data source", style = "margin-bottom: 5px"), |
|
Li("Provides only unique data elements via globally deduplicated across all datasets", style = "margin-bottom: 5px"), |
|
Li("Retains all deduplication metadata for custom upweighting", style = "margin-bottom: 5px"), |
|
Li("Is Production ready! Download here [link to HF repo]", style = "margin-bottom: 5px") |
|
) |
|
|
|
previous_intro = P("""We are excited to introduce TxT360, a |
|
large-scale, comprehensive, and fully transparent |
|
dataset designed for Large Language Model (LLM) |
|
pre-training. TxT360 is engineered to strike a |
|
balance between the quantity and quality of |
|
pre-training data, pushing the limit on both |
|
fronts. This comprehensive dataset encompasses both |
|
expansive web-based data and highly curated data |
|
sources, making it one of the most robust LLM |
|
pre-training corpora available today. Our web data |
|
component includes 99 snapshots from Common Crawl, |
|
amassing 5.7 trillion tokens and occupying 11 TB of |
|
disk space in jsonl.gz format. On the curated side, |
|
TxT360 integrates one of the most extensive |
|
collections of high-quality sources across multiple |
|
domains, ensuring diverse and rich content referred |
|
to as curated sources, 14 sources across 10 |
|
domains. To maintain the highest quality, we |
|
meticulously pre-processed the web data to filter |
|
out low-quality content and conducted thorough |
|
reviews of the curated sources. This process not |
|
only unified their formats but also identified and |
|
rectified any anomalies. Not only do we 100% |
|
open-source our processing scripts, but we also |
|
release the details of our data reviews, revealing |
|
the decision-making processes behind data selection |
|
and quality assurance. This level of transparency |
|
allows researchers and practitioners to fully |
|
understand the dataset’s composition and make |
|
informed decisions when using TxT360 for training. |
|
Additionally, TxT360 includes detailed |
|
documentation and analysis of the data, covering |
|
distribution statistics, domain coverage, and |
|
processing pipeline, which helps users navigate and |
|
utilize the dataset effectively. Overall, TxT360 |
|
represents a significant step forward in the |
|
availability and transparency of large-scale |
|
training data for language models, setting a new |
|
standard for dataset quality and openness.""") |
|
|
|
previous_background = P( |
|
""" The quality and size of a pre-training dataset |
|
play a crucial role in the performance of large |
|
language models (LLMs). The community has |
|
introduced a variety of datasets for this purpose, |
|
including purely web-based datasets like RefinedWeb |
|
[1], RedPajama-Data-V2 [2], DCLM [3], and |
|
FineWeb [4], as well as comprehensive datasets |
|
derived from multiple highly-curated data sources |
|
such as The Pile [5], RedPajama-Data-V1 [6], and |
|
Dolma [7] . It is commonly known that web-based |
|
datasets provide a vast quantity of data, while |
|
highly-curated multi-source datasets consistently |
|
deliver high quality and diversity, both critical |
|
for effective LLM pre-training. However, despite |
|
the advancements in both types of data, each type |
|
of dataset has its limitations. For instance, the |
|
processing scripts for the web dataset, RefinedWeb, |
|
known for its high quality, are not public, and |
|
only about 10% of the entire dataset has been |
|
disclosed. Conversely, the web component of |
|
existing highly-curated multi-source datasets is |
|
relatively small compared to purely web-based |
|
datasets, limiting their coverage and diversity |
|
compared to the scale of information from the |
|
internet. By integrating the extensive reach of |
|
web data with the exceptional quality of curated |
|
sources, TxT360 is crafted to meet and surpass the |
|
rigorous standards required for state-of-the-art |
|
LLM pre-training. """ |
|
), |
|
|
|
previous_content = P("""The performance of a large language model (LLM) |
|
depends heavily on the quality and size of its |
|
pretraining dataset. However, the pretraining |
|
datasets for state-of-the-art open LLMs like Llama |
|
3 and Mixtral are not publicly available and very |
|
little is known about how they were created. |
|
Reading time: 45 min. For the best reading |
|
experience, we recommend not using a mobile phone. |
|
Recently, we released 🍷 FineWeb, a new, |
|
large-scale (15-trillion tokens, 44TB disk space) |
|
dataset for LLM pretraining. FineWeb is derived |
|
from 96 CommonCrawl snapshots and produces |
|
better-performing LLMs than other open pretraining |
|
datasets. To bring more clarity in machine learning |
|
and advance the open understanding of how to train |
|
good quality large language models, we carefully |
|
documented and ablated all of the design choices |
|
used in FineWeb, including in-depth investigations |
|
of deduplication and filtering strategies. The |
|
present long form report is a deep dive in how to |
|
create a large and high-quality web-scale dataset |
|
for LLM pretraining. The dataset itself, 🍷 |
|
FineWeb, is available here. We are extremely |
|
thankful to the whole distill.pub team (Christopher |
|
Olah, Shan Carter, Ludwig Schubert in particular) |
|
for creating the template on which we based this |
|
blog post. Thanks also for inspiring us with |
|
exquisitely crafted articles and blog posts. In |
|
this report we also introduce 📚 FineWeb-Edu, a |
|
subset of FineWeb constructed using scalable |
|
automated high-quality annotations for educational |
|
value, and which outperforms all openly accessible |
|
web-datasets on a number of educational benchmarks |
|
such as MMLU, ARC, and OpenBookQA. 📚 FineWeb-Edu |
|
is available in two sizes/filtering-level: 1.3 |
|
trillion (very high educational content) and 5.4 |
|
trillion (high educational content) tokens (all |
|
tokens are measured with GPT2 tokenizer). You can |
|
download it here. Both datasets are released under |
|
the permissive ODC-By 1.0 license TLDR: This blog |
|
covers a discussion on processing and evaluating |
|
data quality at scale, the 🍷 FineWeb recipe |
|
(listing and explaining all of our design choices), |
|
and the process followed to create its 📚 |
|
FineWeb-Edu subset."""), |
|
|
|
previous_conclusion = P("""This is the conclusion section where we |
|
summarize the key points discussed in the blog post |
|
and provide final thoughts."""), |
|
|
|
@app.get("/intro") |
|
def intro(): |
|
return Div( |
|
Section( |
|
H2("About TxT360"), |
|
intro_text, |
|
intro_list, |
|
intro_list1, |
|
id="section1", |
|
), |
|
Section( |
|
H3("Global Deduplication"), |
|
P("TxT360 curated a wide range of datasets, including a whopping 99 Common Crawl Dumps and a list of high quality datasets: StackExchange, Wikipedia, Arxiv, USPTO, DM Math, HackerNews, Ubuntu IRC, Europarl, FreeLaw, PG19, S2ORC, PhilPapers, PubMed Abstracts, and PubMed Central. For the first time in a released dataset, we locally and globally deduplicated the data across each dataset creating the highest quality data available."), |
|
id="section2", |
|
), |
|
Section( |
|
H3("Controllable Upweighting for Flexible Data Sample Weight Control"), |
|
P("In large-scale corpora like CommonCrawl, text duplication is a frequent occurrence. Duplication can be considered as a natural upsampling of some data points. Recent studies have highlighted the potential drawbacks of oversampling specific data points, which can negatively impact pretraining performance [2205.10487]. However, when samples are repeated appropriately, the performance can actually improve [2306.01116, 2305.16264, 2406.11794, FineWeb]. Despite this, there is currently no widely accepted best practice for data sampling, and it’s unlikely that a one-size-fits-all approach will emerge given the scale of these datasets. Previous work either leaves the deduplication process to the user (as seen in RedPajama V2 and DCLM-Pool) or provides a corpus that has been downsampled in a specific manner (such as in FineWeb and RefinedWeb)."), |
|
P("Given the high cost of deduplication, TxT360 offers a complete deduplication across all datasets (so you don’t have to). Additionally, TxT360 maintains detailed metadata for each sample, including the frequency and location of duplicates. This metadata gives pretrainers the flexibility to adjust the weight of samples as needed. In principle, one can recover the original dataset distribution (footnote: this approach also means a smaller size on disk). We will demonstrate a simple upsampling strategy that results in an effective pretraining dataset. "), |
|
id="section3", |
|
), |
|
Section( |
|
H3("Full and Openly Documented Production Ready Pretraining Corpus"), |
|
P("We cover every aspect of the decisions made to produce the dataset, including document selection, filtering, quality assurance, deduplication, standardization and PII. Our reasoning is thoroughly explained, ensuring transparency and replicability. "), |
|
P("Our code is open sourced here[link to github]."), |
|
P("The dataset is ready for immediate download directly from Hugging Face [link]."), |
|
P("In the remainder of this blog post, we will walk you through the entire process and the rationale behind each decision. Enjoy!"), |
|
id="section4", |
|
), |
|
id="inner-text", |
|
) |
|
|
|
rt("/overview")(overview.overview) |
|
rt("/curated")(curated.curated) |
|
rt("/curated/{target}")(curated.update) |
|
|
|
rt("/webdata")(web.web_data) |
|
rt("/webdata/{target}")(web.update) |
|
|
|
rt("/common")(common.common_steps) |
|
|
|
rt("/results")(results.results) |
|
|
|
serve() |
|
|