Spaces:
Running
Running
import os | |
from tqdm import tqdm | |
import torch | |
import numpy as np | |
import random | |
import scipy.io as scio | |
import src.utils.audio as audio | |
def crop_pad_audio(wav, audio_length): | |
if len(wav) > audio_length: | |
wav = wav[:audio_length] | |
elif len(wav) < audio_length: | |
wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0) | |
return wav | |
def parse_audio_length(audio_length, sr, fps): | |
bit_per_frames = sr / fps | |
num_frames = int(audio_length / bit_per_frames) | |
audio_length = int(num_frames * bit_per_frames) | |
return audio_length, num_frames | |
def generate_blink_seq(num_frames): | |
ratio = np.zeros((num_frames,1)) | |
frame_id = 0 | |
while frame_id in range(num_frames): | |
start = 80 | |
if frame_id+start+9<=num_frames - 1: | |
ratio[frame_id+start:frame_id+start+9, 0] = [0.5,0.6,0.7,0.9,1, 0.9, 0.7,0.6,0.5] | |
frame_id = frame_id+start+9 | |
else: | |
break | |
return ratio | |
def generate_blink_seq_randomly(num_frames): | |
ratio = np.zeros((num_frames,1)) | |
if num_frames<=20: | |
return ratio | |
frame_id = 0 | |
while frame_id in range(num_frames): | |
start = random.choice(range(min(10,num_frames), min(int(num_frames/2), 70))) | |
if frame_id+start+5<=num_frames - 1: | |
ratio[frame_id+start:frame_id+start+5, 0] = [0.5, 0.9, 1.0, 0.9, 0.5] | |
frame_id = frame_id+start+5 | |
else: | |
break | |
return ratio | |
def get_data(first_coeff_path, audio_path, device): | |
syncnet_mel_step_size = 16 | |
fps = 25 | |
pic_name = os.path.splitext(os.path.split(first_coeff_path)[-1])[0] | |
audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0] | |
source_semantics_path = first_coeff_path | |
source_semantics_dict = scio.loadmat(source_semantics_path) | |
ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70 | |
wav = audio.load_wav(audio_path, 16000) | |
wav_length, num_frames = parse_audio_length(len(wav), 16000, 25) | |
wav = crop_pad_audio(wav, wav_length) | |
orig_mel = audio.melspectrogram(wav).T | |
spec = orig_mel.copy() # nframes 80 | |
indiv_mels = [] | |
for i in tqdm(range(num_frames), 'mel:'): | |
start_frame_num = i-2 | |
start_idx = int(80. * (start_frame_num / float(fps))) | |
end_idx = start_idx + syncnet_mel_step_size | |
seq = list(range(start_idx, end_idx)) | |
seq = [ min(max(item, 0), orig_mel.shape[0]-1) for item in seq ] | |
m = spec[seq, :] | |
indiv_mels.append(m.T) | |
indiv_mels = np.asarray(indiv_mels) # T 80 16 | |
ratio = generate_blink_seq_randomly(num_frames) # T | |
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1).unsqueeze(0) # bs T 1 80 16 | |
ratio = torch.FloatTensor(ratio).unsqueeze(0) # bs T | |
ref_coeff = torch.FloatTensor(ref_coeff).unsqueeze(0) # bs 1 70 | |
indiv_mels = indiv_mels.to(device) | |
ratio = ratio.to(device) | |
ref_coeff = ref_coeff.to(device) | |
return {'indiv_mels': indiv_mels, | |
'ref': ref_coeff, | |
'num_frames': num_frames, | |
'ratio_gt': ratio, | |
'audio_name': audio_name, 'pic_name': pic_name} | |